News

NEWS

  • Wheat phenotyping workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop "Wheat phenotyping for the identification of germplasm with high yield potential and tolerance to drought and heat". This will be held in CIMMYT HQ, Texcoco, State of Mexico, on September 28th, 2018 (from 9:00 – 14:00 hrs) as part of the II Plant Breeding Symposium México 2018 (https://trasmejoragen.wixsite.com/inicio) The objective of this workshop is to train participants in the phenotypic characterization of wheat germplasm. Research themes include: climate change; priority characteristics for wheat for Mexico; phenotyping of genetically diverse materials and in the ...

  • II Plant Breeding Symposium Mexico 2018

    MasAgro Biodiversity announces the II Plant Breeding Symposium Mexico 2018 which will be held on September 6 and 7, 2018 at the CIMMYT HQ, Texcoco. Mexico. This event belongs to the series of DuPont Plant Sciences Symposia. For more information please visit the website:https://trasmejoragen.wixsite.com/inicio

  • New video: Crop biodiversity for healthy, nutritious livelihoods

    Erratic weather, poor soil health, and resource shortages keep millions of maize and wheat farmers in developing countries from growing enough to feed their households and communities or to harvest a surplus to sell.

  • 3rd KDSmart app workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop on the use of the KDSmart app. This will be held in Texcoco, State of Mexico, on December 20, 2017 (from 9:00 - 17:00 hrs).

Read more

Catalogue

PRODUCTS CATALOGUE

PRODUCTS CATALOGUE

MasAgro Biodiversity, a component of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, focuses on the utilization and conservation of valuable genetic resources with genetic diversity protected in germplasm banks. This program has the purpose of accelerating the development of Varieties of maize and wheat that can meet the nutrition and nutritional demands of a growing population, facing the challenges of climate change.

By characterizing the genetic configuration of CIMMYT germplasm bank collections, the evaluation of priority characteristics – such as drought tolerance, high temperatures and some diseases – and the development of bioinformatics tools that streamline its analysis, MasAgro Biodiversity has Generated a “platform for the utilization of genetic resources” of maize and wheat.

This platform puts several products at the disposal of the scientific community. MasAgro Biodiversity also offers some services in order to promote equity in access and benefits of the use of maize and wheat diversity.

Read more

Maize is one of the three most important food staples globally. However, in spite of this global importance and highly diverse genetic base, the germplasm pool typically used by maize breeders to develop varieties globally is relatively narrow, considering the breadth of diversity in the primary gene pool.

Antonio Hernández and Oscar Osorio measuring field harvest weight at CIMMYT’s Agua Fría station. Photo: CIMMYT.

Maize genebanks of the world conserve many tens of thousands of landraces, each representing a population of genetically heterogeneous individuals. These were, and, in regions of some countries like Mexico, are still used by smallholder farmers. In addition to landraces, the banks also hold many hundreds of accessions of maize ancestors and wild relatives (teocinte and Tripsacum species). Together, these collections represent the genetic heritage of maize, potentially harboring many undiscovered genes, alleles and haplotypes that have yet to be harnessed for maize improvement.

In the Maize component of SeeD we systematically explore the genetic richness of these collections to enable the targeted broadening of the genetic base of maize breeding programs. We are working towards four interrelated objectives, each comprising a group of well-defined outputs:

  • Objective 1: Build a molecular atlas for maize. We have developed a sequence based genotyping method that uses leaf bulks to simultaneously quantify genetic distances amongst, and diversity parameters within landrace populations (accessions) of genetically heterogeneous individuals. This move from single-plant to population-level genetic fingerprints (comprising both SNP and PAV polymorphisms) makes it possible to systematically characterize up to 40,000 landraces, advanced lines and wild relatives. The resulting genotypic data, along with links to existing passport and characterization/evaluation data, will be represented in a searchable ‘Maize Molecular Atlas’, available through the Germinate platform via this website.
  • Objective 2: Identify alleles for stress-tolerance traits and traditional uses. Many maize breeding targets are genetically complex. Under this objective, SeeD aims to identify alleles and haplotypes from landraces, which control traits such as heat and drought tolerance. As part of this effort SeeD has developed a population of more than 4,000 testcross progenies derived from accessions of CIMMYT’s core collection. Only one individual per accession was crossed, based on the assumption that haplotypes are likely to be replicated across accessions. Project participants have been phenotyping this population across multiple experimental stations in the different agroecological zones where maize is grown in Mexico. The testcross parents have been genome-profiled at ultrahigh density using DArTseq methodology. The trial data to date have been co-analyzed with the genome-profile data to perform a large genomic prediction/genome-wide association study (GWAS) to identify high-value ‘donor accessions’ and beneficial small-effect alleles/haplotypes. In addition to this effort SeeD has been using derived GIS (Geographic Information System) data obtained from analysis of collecting sites for both the CIMMYT germplasm bank collection and a recent collection funded by the National Commission for the Knowledge and Use of Biodiversity (CONABIO) to select accessions based on environmental or usage data and screen for beneficial alleles for selected traits. The screening involves (a) the per se characterization of accessions e.g. collected from extreme environments, heat and drought tolerance; identified for specific culinary/nutritional properties; blue maize, and (b) the evaluation of well performing accessions in testcross background.

  • Objective 3: Develop maize ‘bridging germplasm’. The final objective harnesses and combines outputs of the first three to develop new early generation maize lines in breeder friendly backgrounds with introgressed alleles of beneficial effect. This bridging or ‘pre-breeding germplasm’ will be made available to breeders, along with associated information such as agronomic performance in stress and optimal conditions, marker-trait associations and genomic estimates of breeding values to facilitate better selection and use of germplasm for trait mobilization within breeding programs.

Terry Molnar, maize breeder with SeeD, and Enrique Rodriguez, field research technician with SeeD, evaluate bridging germplasm for resistance to tar spot complex. Photo: J. Johnson/CIMMYT.

To stimulate innovation and crowdsourcing-based data mining, all maize datasets and attribution information will be made publicly available via the Maize Molecular Atlas no later than 24 months after their generation (so that those who generated the data have an opportunity to draft scientific publications to add value to the data).

For more information please contact us at: seed@masagro.org

RESEARCH PORTFOLIO

RESEARCH PORTFOLIO

Genetic resources

Genetic resources

Capacity

Capacity

Data

Data

Pre-breeding Germplasm

Pre-breeding Germplasm

Knowledge

Knowledge

Software

Software

PHILOSOPHY OF OUR APPROACH

PHILOSOPHY OF OUR APPROACH

So many accessions, so few data!

Many genebanks resemble libraries that lack sufficiently informative catalogs. The advent of next-generation DNA-sequencing platforms has made it possible to characterize the genetic diversity conserved in entire genebanks.

Information management

Generating new data by itself is insufficient if it cannot be effectively disseminated, queried, summarized, visualized, and analyzed. Data generation, therefore, has to go hand-in-hand with providing intuitive software and analysis tools to deal with the rapidly expanding datasets describing maize and wheat genetic resources.

Pre-breeding

A ‘reformatting’ of the diversity in genebanks into a more breeder-ready format could lower the barriers to mobilize novel genetic variation into breeding programs, which in good part are due to the dependency of gene effects on genetic backgrounds.

Traits with complex genetic architecture

Some of the most important challenges to agriculture need to be addressed by manipulating genetically complex characters controlled by small-effect alleles (yield potential, heat and drought tolerance, etc.).

Collecting germplasm.

The availability of sufficient numbers of genebank accessions does not appear to be a factor limiting the use of novel genetic variation in breeding programs, and a new initiative will secure the global network of genebanks of humanity’s major food crops for future generations.