News

NEWS

  • Wheat phenotyping workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop "Wheat phenotyping for the identification of germplasm with high yield potential and tolerance to drought and heat". This will be held in CIMMYT HQ, Texcoco, State of Mexico, on September 28th, 2018 (from 9:00 – 14:00 hrs) as part of the II Plant Breeding Symposium México 2018 (https://trasmejoragen.wixsite.com/inicio) The objective of this workshop is to train participants in the phenotypic characterization of wheat germplasm. Research themes include: climate change; priority characteristics for wheat for Mexico; phenotyping of genetically diverse materials and in the ...

  • II Plant Breeding Symposium Mexico 2018

    MasAgro Biodiversity announces the II Plant Breeding Symposium Mexico 2018 which will be held on September 6 and 7, 2018 at the CIMMYT HQ, Texcoco. Mexico. This event belongs to the series of DuPont Plant Sciences Symposia. For more information please visit the website:https://trasmejoragen.wixsite.com/inicio

  • New video: Crop biodiversity for healthy, nutritious livelihoods

    Erratic weather, poor soil health, and resource shortages keep millions of maize and wheat farmers in developing countries from growing enough to feed their households and communities or to harvest a surplus to sell.

  • 3rd KDSmart app workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop on the use of the KDSmart app. This will be held in Texcoco, State of Mexico, on December 20, 2017 (from 9:00 - 17:00 hrs).

Read more

Catalogue

PRODUCTS CATALOGUE

PRODUCTS CATALOGUE

MasAgro Biodiversity, a component of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, focuses on the utilization and conservation of valuable genetic resources with genetic diversity protected in germplasm banks. This program has the purpose of accelerating the development of Varieties of maize and wheat that can meet the nutrition and nutritional demands of a growing population, facing the challenges of climate change.

By characterizing the genetic configuration of CIMMYT germplasm bank collections, the evaluation of priority characteristics – such as drought tolerance, high temperatures and some diseases – and the development of bioinformatics tools that streamline its analysis, MasAgro Biodiversity has Generated a “platform for the utilization of genetic resources” of maize and wheat.

This platform puts several products at the disposal of the scientific community. MasAgro Biodiversity also offers some services in order to promote equity in access and benefits of the use of maize and wheat diversity.

Read more

  • Home
  • News
  • Learning partnerships turn research into results for Mexican agriculture

Learning partnerships turn research into results for Mexican agriculture

By Jennifer Johnson

Cynthia Ortiz places DNA samples into a thermal cycler in the CIMMYT Biosciences laboratory.

Cynthia Ortiz places DNA samples into a thermal cycler in the CIMMYT Biosciences laboratory.

The Seeds of Discovery (SeeD) project seeks to empower the next generation of Mexican scientists to use maize and wheat biodiversity to effectively meet the needs of Mexican agriculture in the future. By providing professional agricultural research and development opportunities for current and future maize and wheat scientists, SeeD works to ensure that the materials they develop will reach those who need them most. For this reason, SeeD is developing a platform of publicly available data and software tools that enable the efficient use of maize and wheat genetic resources. These genetic resources, or biodiversity, include more than 28,000 maize and 140,000 wheat samples, known as accessions, that are conserved in CIMMYT’s seed bank and available to researchers worldwide.

Genetic resources are the raw materials or building blocks used to develop new maize and wheat varieties needed to meet the demands of a growing population in a changing climate. Many of these maize and wheat accessions contain positive traits such as drought tolerance or disease resistance, which, if bred into new varieties, have the potential to improve food security and livelihoods in countries such as Mexico.

However, the specific potential impact of SeeD on Mexican agriculture and society will only be realized if breeders and scientists effectively use the products resulting from the project. By inviting researchers, professors and students to participate in workshops, training courses and diverse research projects, a growing cadre of scientists is learning how to use the databases and software tools developed by SeeD and validating their utility.

“Sharing the knowledge generated by SeeD and making it available to the scientific community will help accelerate the development of new varieties that will benefit long-term food security in Mexico and the world,” said Cynthia Ortiz, a graduate student in biotechnology at the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) in Mexico City.

Ortiz is conducting research for her Master of Science thesis mentored by SeeD scientist Sukhwinder Singh, who is helping her map the quantitative trait loci (QTL) for phenological and grain yield-related traits in wheat varieties created by crossing synthetic wheat varieties with elite lines. She has participated in two SeeD workshops focusing on wheat phenotyping for heat, drought and yield as well as on the use of the maize and wheat molecular atlas, where she learned to use SeeD software such as Flapjack and CurlyWhirly to visualize the results of genetic diversity analyses.

“The materials SeeD has developed have opened the door for identifying genetic resources with positive traits such as heat and drought tolerance, or resistance to pests and diseases that affect crops all over the world,” Ortiz said. “And the best part is that at the same time, they have sought to protect the genetic diversity of these crops, using the native biodiversity we have in Mexico and the world to confront the challenge of ensuring food security.”

David Gonzalez (L) scores maize plants for signs of tar spot disease alongside SeeD scientist Terence Molnar (R) in the state of Chiapas, Mexico.

David Gonzalez (L) scores maize plants for signs of tar spot disease alongside SeeD scientist Terence Molnar (R) in the state of Chiapas, Mexico.

David Gonzalez, a recent graduate of the Chapingo Autonomous University in Texcoco, a city about 30 km (20 miles) from Mexico City, agrees. He worked with SeeD scientists Sarah Hearne and Terence Molnar on his Master of Science thesis research, identifying genetic resources with resistance to the maize leaf disease “tar spot complex” (TSC) by using genome-wide association study (GWAS) and genomic selection.

“The software and databases SeeD develops for analyzing genotypic and phenotypic data are novel tools that can be used for research as well as academic purposes,” Gonzalez said. “They are a valuable resource that can be utilized by academic institutions to train students in genetic analysis.”

Gonzalez attended the CIMMYT training course “Technologies for Tropical Maize Improvement,” where he learned about new tools for field trial design, data analysis, doubled haploid technology, molecular markers, GWAS and genomic selection.

“This training, as well as the valuable help and support from CIMMYT scientists, really helped me develop myself professionally,” he said. “It was exciting to work with such an ambitious project, doing things that have never been done before to discover and utilize maize and wheat genetic diversity for the benefit of farmers. I look forward to using what I’ve learned in my future career to develop varieties that meet the needs of farmers in Latin America.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of agriculture and rural development (SADER) through theMasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Tags: ,

RESEARCH PORTFOLIO

RESEARCH PORTFOLIO

Genetic resources

Genetic resources

Capacity

Capacity

Data

Data

Pre-breeding Germplasm

Pre-breeding Germplasm

Knowledge

Knowledge

Software

Software

PHILOSOPHY OF OUR APPROACH

PHILOSOPHY OF OUR APPROACH

So many accessions, so few data!

Many genebanks resemble libraries that lack sufficiently informative catalogs. The advent of next-generation DNA-sequencing platforms has made it possible to characterize the genetic diversity conserved in entire genebanks.

Information management

Generating new data by itself is insufficient if it cannot be effectively disseminated, queried, summarized, visualized, and analyzed. Data generation, therefore, has to go hand-in-hand with providing intuitive software and analysis tools to deal with the rapidly expanding datasets describing maize and wheat genetic resources.

Pre-breeding

A ‘reformatting’ of the diversity in genebanks into a more breeder-ready format could lower the barriers to mobilize novel genetic variation into breeding programs, which in good part are due to the dependency of gene effects on genetic backgrounds.

Traits with complex genetic architecture

Some of the most important challenges to agriculture need to be addressed by manipulating genetically complex characters controlled by small-effect alleles (yield potential, heat and drought tolerance, etc.).

Collecting germplasm.

The availability of sufficient numbers of genebank accessions does not appear to be a factor limiting the use of novel genetic variation in breeding programs, and a new initiative will secure the global network of genebanks of humanity’s major food crops for future generations.