News

NEWS

  • Wheat phenotyping workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop "Wheat phenotyping for the identification of germplasm with high yield potential and tolerance to drought and heat". This will be held in CIMMYT HQ, Texcoco, State of Mexico, on September 28th, 2018 (from 9:00 – 14:00 hrs) as part of the II Plant Breeding Symposium México 2018 (https://trasmejoragen.wixsite.com/inicio) The objective of this workshop is to train participants in the phenotypic characterization of wheat germplasm. Research themes include: climate change; priority characteristics for wheat for Mexico; phenotyping of genetically diverse materials and in the ...

  • II Plant Breeding Symposium Mexico 2018

    MasAgro Biodiversity announces the II Plant Breeding Symposium Mexico 2018 which will be held on September 6 and 7, 2018 at the CIMMYT HQ, Texcoco. Mexico. This event belongs to the series of DuPont Plant Sciences Symposia. For more information please visit the website:https://trasmejoragen.wixsite.com/inicio

  • New video: Crop biodiversity for healthy, nutritious livelihoods

    Erratic weather, poor soil health, and resource shortages keep millions of maize and wheat farmers in developing countries from growing enough to feed their households and communities or to harvest a surplus to sell.

  • 3rd KDSmart app workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop on the use of the KDSmart app. This will be held in Texcoco, State of Mexico, on December 20, 2017 (from 9:00 - 17:00 hrs).

Read more

Catalogue

PRODUCTS CATALOGUE

PRODUCTS CATALOGUE

MasAgro Biodiversity, a component of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, focuses on the utilization and conservation of valuable genetic resources with genetic diversity protected in germplasm banks. This program has the purpose of accelerating the development of Varieties of maize and wheat that can meet the nutrition and nutritional demands of a growing population, facing the challenges of climate change.

By characterizing the genetic configuration of CIMMYT germplasm bank collections, the evaluation of priority characteristics – such as drought tolerance, high temperatures and some diseases – and the development of bioinformatics tools that streamline its analysis, MasAgro Biodiversity has Generated a “platform for the utilization of genetic resources” of maize and wheat.

This platform puts several products at the disposal of the scientific community. MasAgro Biodiversity also offers some services in order to promote equity in access and benefits of the use of maize and wheat diversity.

Read more

  • Home
  • News
  • Global science team rescues rare wheat seed from the Fertile Crescent

Global science team rescues rare wheat seed from the Fertile Crescent

By Katie Lutz

After wheat seeds are planted in the greenhouse, the samples are then harvested and prepared to be sent to the laboratory for DNA extraction and genotyping. Photographer: CIMMYT/Carolina Sansaloni

After wheat seeds are planted in the greenhouse, the samples are then harvested and prepared to be sent to the laboratory for DNA extraction and genotyping.
Photographer: CIMMYT/Carolina Sansaloni

With Syria torn apart by civil war, a team of scientists in Mexico and Morocco are rushing to save a vital sample of wheat’s ancient and massive genetic diversity, sealed in seed collections of an international research center formerly based in Aleppo but forced to leave during 2012-13.

The researchers are restoring and genetically characterizing more than 30,000 unique seed collections of wheat from the Syrian genebank of the International Center for Agricultural Research in the Dry Areas (ICARDA), which has relocated its headquarters to Beirut, Lebanon, and backed up its 150,000 collections of barley, fava bean, lentil and wheat seed with partners and in the Global Seed Vault at Svalbard, Norway.

In March 2015, scientists at ICARDA were awarded The Gregor Mendel Foundation Innovation Prize for their courage in securing and preserving their seed collections at Svalbard, by continuing work and keeping the genebank operational in Syria even amidst war.

“With war raging in Syria, this project is incredibly important,” said Carolina Sansaloni, genotyping and DNA sequencing specialist with the Seeds of Discovery (SeeD) project at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), which is leading work to analyze the samples and locate genes for breeding high-yield, climate resilient wheats. “It would be amazing if we could be just a small part of reintroducing varieties that have been lost in war-torn regions.”

Treasure from wheat’s cradle to feed the future

Much of wheat seed comes from the Fertile Crescent, a region whose early nations developed and depended on wheat as the vital grain of their civilizations. The collections could hold the key for future breeding to feed an expanding world population, according to Sansaloni.

“An ancient variety bred out over time could contain a gene for resistance to a deadly wheat disease or for tolerance to climate change effects like heat and drought, which are expected to become more severe in developing countries where smallholder farmers and their families depend on wheat,” she explained.

Cross-region partners, global benefits

Sansaloni’s team has been sequencing DNA from as many as 2,000 seed samples a week, as well as deriving molecular markers for breeder- and farmer-valued traits, such as disease resistance, drought or heat tolerance and qualities that contribute to higher yields and grain quality.

They are using a high-end DNA sequencing system located at the Genetic Analysis Service for Agriculture (SAGA), a partnership between CIMMYT and Mexico’s Ministry of agriculture and rural development (SADER), and with the support of a private company from Australia, Diversity Arrays Technology (DArT).

The sequencer at SAGA can read 1600 samples of seed at once and develops more data than ever before. The HiSeq 2500 boils down data and shows the information at a “sequence level”, for example, height variations among wheat varieties.

Worldwide, there are few other machines that produce this kind of data and most are owned by private companies, explained Sansaloni. This was the first non-Latin American based project used by the HiSeq 2500.

“The success of this project shows what a fantastic opportunity for international collaboration we now have,” Sansaloni said. “I can’t even put a value on the importance of the data we have collected from this project. It’s priceless.”

After data has been collected, seed samples will be “regenerated” by ICARDA and CIMMYT. That is, the process of restoring old seed samples with healthy new seeds.

ICARDA and CIMMYT will share seed and data from the project and make these results available worldwide.

“With these new seeds, we hope to reconstruct ICARDA’s active and base collection of seeds over the next five years in new genebank facilities in Lebanon and Morocco,” said Fawzy Nawar, senior genebank documentation specialist, ICARDA.

Funded through the CGIAR Research Program on Wheat, the effort benefits both of the international centers, as well as wheat breeding programs worldwide, said Tom Payne, head of CIMMYT’s Wheat Germplasm Bank. “ICARDA is in a difficult situation, with a lack of easy access to their seeds and no facilities to perform genotyping,” he explained. “This was the perfect opportunity to collaborate.”

 

To read the original article, please click here:

Tags: , , , ,

RESEARCH PORTFOLIO

RESEARCH PORTFOLIO

Genetic resources

Genetic resources

Capacity

Capacity

Data

Data

Pre-breeding Germplasm

Pre-breeding Germplasm

Knowledge

Knowledge

Software

Software

PHILOSOPHY OF OUR APPROACH

PHILOSOPHY OF OUR APPROACH

So many accessions, so few data!

Many genebanks resemble libraries that lack sufficiently informative catalogs. The advent of next-generation DNA-sequencing platforms has made it possible to characterize the genetic diversity conserved in entire genebanks.

Information management

Generating new data by itself is insufficient if it cannot be effectively disseminated, queried, summarized, visualized, and analyzed. Data generation, therefore, has to go hand-in-hand with providing intuitive software and analysis tools to deal with the rapidly expanding datasets describing maize and wheat genetic resources.

Pre-breeding

A ‘reformatting’ of the diversity in genebanks into a more breeder-ready format could lower the barriers to mobilize novel genetic variation into breeding programs, which in good part are due to the dependency of gene effects on genetic backgrounds.

Traits with complex genetic architecture

Some of the most important challenges to agriculture need to be addressed by manipulating genetically complex characters controlled by small-effect alleles (yield potential, heat and drought tolerance, etc.).

Collecting germplasm.

The availability of sufficient numbers of genebank accessions does not appear to be a factor limiting the use of novel genetic variation in breeding programs, and a new initiative will secure the global network of genebanks of humanity’s major food crops for future generations.