News

NEWS

  • Wheat phenotyping workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop "Wheat phenotyping for the identification of germplasm with high yield potential and tolerance to drought and heat". This will be held in CIMMYT HQ, Texcoco, State of Mexico, on September 28th, 2018 (from 9:00 – 14:00 hrs) as part of the II Plant Breeding Symposium México 2018 (https://trasmejoragen.wixsite.com/inicio) The objective of this workshop is to train participants in the phenotypic characterization of wheat germplasm. Research themes include: climate change; priority characteristics for wheat for Mexico; phenotyping of genetically diverse materials and in the ...

  • II Plant Breeding Symposium Mexico 2018

    MasAgro Biodiversity announces the II Plant Breeding Symposium Mexico 2018 which will be held on September 6 and 7, 2018 at the CIMMYT HQ, Texcoco. Mexico. This event belongs to the series of DuPont Plant Sciences Symposia. For more information please visit the website:https://trasmejoragen.wixsite.com/inicio

  • New video: Crop biodiversity for healthy, nutritious livelihoods

    Erratic weather, poor soil health, and resource shortages keep millions of maize and wheat farmers in developing countries from growing enough to feed their households and communities or to harvest a surplus to sell.

  • 3rd KDSmart app workshop

    The International Maize and Wheat Improvement Center (CIMMYT) extends a cordial invitation to participate in the training workshop on the use of the KDSmart app. This will be held in Texcoco, State of Mexico, on December 20, 2017 (from 9:00 - 17:00 hrs).

Read more

Catalogue

PRODUCTS CATALOGUE

PRODUCTS CATALOGUE

MasAgro Biodiversity, a component of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, focuses on the utilization and conservation of valuable genetic resources with genetic diversity protected in germplasm banks. This program has the purpose of accelerating the development of Varieties of maize and wheat that can meet the nutrition and nutritional demands of a growing population, facing the challenges of climate change.

By characterizing the genetic configuration of CIMMYT germplasm bank collections, the evaluation of priority characteristics – such as drought tolerance, high temperatures and some diseases – and the development of bioinformatics tools that streamline its analysis, MasAgro Biodiversity has Generated a “platform for the utilization of genetic resources” of maize and wheat.

This platform puts several products at the disposal of the scientific community. MasAgro Biodiversity also offers some services in order to promote equity in access and benefits of the use of maize and wheat diversity.

Read more

SeeD: Mexico’s contribution to global food security

The Seeds of Discovery (SeeD) initiative is a platform for utilizing maize and wheat genetic resources, with lessons that can be applied to other crops. By characterizing the genetic makeup of maize and wheat collections, SeeD generates data that will accelerate the development of improved crop varieties to meet the demands of a growing population in a changing climate.

5219280458_11cfc29e22_oSeeD has put together tools to facilitate the efficient use of these data and the germplasm that they describe. Together, the data, software tools, bridging germplasm and capacity development opportunities make up a free and publically available “genetic resources utilization platform.” This platform ensures that breeders and researchers around the world can efficiently use the invaluable data and germplasm identified or produced by SeeD on maize and wheat genetic diversity.

SeeD achieves impact through 5 main components:

  • Genotyping: sequencing the genetic code of maize and wheat collections held in genebanks to identify and characterize diversity for traits that are valuable or essential to develop improved crop varieties
  • Phenotyping: characterizing the maize and wheat collections for their responses to stresses such as heat, drought or disease, and for quality traits such as nutritional or culinary attributes
  • Software tools: allow enhanced analysis of genotypic and phenotypic data generated by SeeD to select varieties with positive traits to add to breeding programs
  • Pre-breeding: transferring useful genetic variation from wild or exotic wheats and maizes held in genebanks into “Bridging Germplasm,” types or lines that breeders can readily use to develop improved varieties grown by farmers
  • Capacity building: to ensure equity in the use of genetic resources, building awareness, interest and skills to utilize our products to create impact

img_2334-wheat-diversity-species-fan-id

SeeD is a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Ministry of agriculture and rural development (SADER) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). 

RESEARCH PORTFOLIO

RESEARCH PORTFOLIO

Genetic resources

Genetic resources

Capacity

Capacity

Data

Data

Pre-breeding Germplasm

Pre-breeding Germplasm

Knowledge

Knowledge

Software

Software

PHILOSOPHY OF OUR APPROACH

PHILOSOPHY OF OUR APPROACH

So many accessions, so few data!

Many genebanks resemble libraries that lack sufficiently informative catalogs. The advent of next-generation DNA-sequencing platforms has made it possible to characterize the genetic diversity conserved in entire genebanks.

Information management

Generating new data by itself is insufficient if it cannot be effectively disseminated, queried, summarized, visualized, and analyzed. Data generation, therefore, has to go hand-in-hand with providing intuitive software and analysis tools to deal with the rapidly expanding datasets describing maize and wheat genetic resources.

Pre-breeding

A ‘reformatting’ of the diversity in genebanks into a more breeder-ready format could lower the barriers to mobilize novel genetic variation into breeding programs, which in good part are due to the dependency of gene effects on genetic backgrounds.

Traits with complex genetic architecture

Some of the most important challenges to agriculture need to be addressed by manipulating genetically complex characters controlled by small-effect alleles (yield potential, heat and drought tolerance, etc.).

Collecting germplasm.

The availability of sufficient numbers of genebank accessions does not appear to be a factor limiting the use of novel genetic variation in breeding programs, and a new initiative will secure the global network of genebanks of humanity’s major food crops for future generations.