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Abstract
This paper describes AlphaSim, a software package for simulat-
ing plant and animal breeding programs. AlphaSim enables 
the simulation of multiple aspects of breeding programs with 
a high degree of flexibility. AlphaSim simulates breeding pro-
grams in a series of steps: (i) simulate haplotype sequences 
and pedigree; (ii) drop haplotypes into the base generation of 
the pedigree and select single-nucleotide polymorphism (SNP) 
and quantitative trait nucleotide (QTN); (iii) assign QTN effects, 
calculate genetic values, and simulate phenotypes; (iv) drop 
haplotypes into the burn-in generations; and (v) perform selection 
and simulate new generations. The program is flexible in terms 
of historical population structure and diversity, recent pedigree 
structure, trait architecture, and selection strategy. It integrates 
biotechnologies such as doubled-haploids (DHs) and gene edit-
ing and allows the user to simulate multiple traits and multiple 
environments, specify recombination hot spots and cold spots, 
specify gene jungles and deserts, perform genomic predictions, 
and apply optimal contribution selection. AlphaSim also includes 
restart functionalities, which increase its flexibility by allowing 
the simulation process to be paused so that the parameters can 
be changed or to import an externally created pedigree, trial 
design, or results of an analysis of previously simulated data. By 
combining the options, a user can simulate simple or complex 
breeding programs with several generations, variable popula-
tion structures and variable breeding decisions over time. In 
conclusion, AlphaSim is a flexible and computationally efficient 
software package to simulate biotechnology enhanced breeding 
programs with the aim of performing rapid, low-cost, and objec-
tive in silico comparison of breeding technologies.

This paper introduces AlphaSim, a software package 
for simulating breeding programs. AlphaSim com-

bines features from three previous simulation packages, 
AlphaDrop (Hickey and Gorjanc, 2012), AlphaSimPlant, 
and AlphaMPSim (Hickey et al., 2014), with new features 
to form a comprehensive software package capable of 
simulating a wide range of mating designs, biotechnolo-
gies, and selection strategies. This allows a user to per-
form plant or animal breeding simulations in any species 
using a wide range of strategies. AlphaSim offers the user 
a high degree of simulation flexibility making it a useful 
tool for designing and optimizing new breeding strate-
gies using newly developed technologies.

Simulation has been an effective platform for the 
evaluation and development of new breeding strategies. 
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Core Ideas

•	 AlphaSim allows breeders and researchers to simulate 
genomic data with specific user criteria.

•	 AlphaSim is flexible, computationally efficient, and 
easy to use for a wide range of possible scenarios.

•	 AlphaSim can also be used in animal breeding, 
human genetics, and population genetics.
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Large-scale field-testing of breeding strategies is either 
impractical or impossible because of the time and 
resources needed; simulation offers a comparatively quick 
and inexpensive alternative. Many software packages for 
plant breeding simulations are currently available (Sun et 
al., 2011). These packages have been useful for evaluating 
existing breeding strategies in actual field-based breed-
ing programs (Wang et al., 2003) and have been used to 
develop new breeding strategies. For example, the PLAB-
SIM software package aided in the development of an 
efficient marker-assisted backcross design used to transfer 
the stripe rust (Puccinia striiformis f. sp. tritici) resistance 
gene Yr15 to the spring wheat (Triticum aestivum L.) 
cultivar Zak (Randhawa et al., 2009). The historical use 
of simulation and the expanding range of technological 
options for breeding programs indicates that simulation 
will continue to play a role and indeed play an increas-
ingly relevant role in future research focusing on design 
and optimization of plant and animal breeding programs.

New breeding strategies are required to efficiently 
optimize the implementation of new technologies in 
breeding programs. Genomic selection (Meuwissen et al., 
2001; Bernardo and Yu, 2007) and genome editing (Shan 
et al., 2014; Jenko et al., 2015) are two such technologies. 
Genomic selection in particular has been widely pro-
moted as a technology of great value to plant breeding 
(Bernardo and Yu, 2007; Heffner et al., 2009; Jannink et 
al., 2010). While it has a large potential to improve plant 
breeding, implementation of genomic selection requires 
optimization to maximize return on investment. Simula-
tion is the ideal tool to develop optimal breeding strate-
gies while assessing costs and benefits (e.g., Hickey et al., 
2014; Gorjanc et al., 2016). However, to our knowledge, 
existing software packages lack the ability to simulate 
breeding programs with genomic selection with suffi-
cient flexibility and computational efficiency.

We designed AlphaSim to fill the need for a soft-
ware package that is capable of simulating new breed-
ing designs and application of biotechnologies, such as 
genomic selection and gene editing, in a flexible and 
computationally efficient manner. This paper describes 
the simulation method and operation of AlphaSim in 
varied plant breeding applications with an emphasis 
on its main features (Fig. 1) and computational perfor-
mance. Examples of how to use the software are included 
with measures of computational efficiency. Table 1 gives 
a list of symbols used throughout this paper.

Materials and Methods

Method
AlphaSim simulates breeding programs in five main 
steps (Fig. 2):

1. 	Simulate haplotype sequences and pedigree.
2.	 Drop haplotypes into the base generation and select 

SNP and QTN.

3.	 Assign QTN effects, calculate genetic values, and 
simulate phenotypes.

4.	 Drop haplotypes into the burn-in generations.
5.	 Perform selection and simulate new generations.

For each generation, AlphaSim writes information 
about the haplotype sequences, SNP and QTN geno-
types, and breeding values in output files, which canww 
be used for further analysis or for running alternative 
scenarios. This also helps to keep the memory require-
ments of AlphaSim low. The following five subsections 
provide details of each step of the method considering 
the simulation of a single trait. The remainder of this sec-
tion describes additional features, output, and the data 
storage system of the software.

First Step: Simulate Haplotype Sequences  
and Pedigree (Fig. 2, Step 1)
By default, haplotype sequences are simulated through 
a system call to program MaCS. MaCS is a coalescent 
simulation program that simulates, for each chromosome 
successively, a sample of haplotype sequences according 
to specified ancestral population with, at a minimum, a 
specified chromosome size, mutation rate, recombina-
tion rate, and effective population size. Alternatively, the 
user can also generate their own haplotype sequences 
externally and import them into AlphaSim. This external 
source can be either real sequences or sequences simu-
lated using other methods.

Second Step: Drop Haplotypes into the Base 
Generation of the Pedigree and Select Single-
Nucleotide Polymorphism and Quantitative  
Trait Nucleotide (Fig. 2, Step 2)
AlphaSim samples haplotypes with replacement from the 
base set of haplotype sequences and drops them into the 
first generation of the pedigree. Dropping of haplotypes 
involves recombination events, which are randomly dis-
tributed across the genome ignoring interference. Should 
the user prefer nonrandom distribution of recombination 
events, a file can be supplied that specifies the propor-
tion of recombination events in specific regions of the 
genome, that is, recombination hot spots and cold spots.

After the haplotypes are dropped into the base gen-
eration, AlphaSim samples segregating sites to become 
either SNP markers or QTNs. The SNP markers consti-
tute distinct SNP panels, and the user has control over 
the number of panels, their density, the minimum and 
maximum allele frequency of SNP, whether the panels 
are nested within each other or not, whether these pan-
els include QTN or not, and which panel will be used 
in selection. The user can also control whether the full 
sequence and phased data are provided as output.

AlphaSim samples two sets of segregating sites to 
become biallelic QTN. Both sets include the same user-
specified number of QTN, denoted as nQTN. The first set, 
referred to as unrestricted, is comprised of QTN selected at 
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random from across the genome. The second set, referred 
to as restricted, is comprised of QTN selected at random 
from across the genome with the restriction that the minor 
allele frequency must be in a specified range. The restric-
tions in allele frequency of both SNP markers and QTN 
allow the user to manage the possibility that QTN have 
different allele frequencies than SNP. Should the user prefer 
nonrandom distribution of QTN, a file can be supplied that 
specifies the proportions of QTN in specific regions of the 
genome, that is, gene jungles and deserts.

Third Step: Assign Quantitative Trait Nucleotide 
Effects, Calculate Genetic Values and Simulate 
Phenotypes (Fig. 2, Step 3)
AlphaSim assigns coded genetic values for additive and 
dominance effects to the frequency-restricted and unre-
stricted sets of QTN independently (i.e., a, d, and −a; 
Bernardo, 2010). For additive genetic values, let k indi-
cate a QTN from one of the QTN sets. For each QTN k, 
AlphaSim randomly samples deviates from a standard 
Gaussian distribution, defined as a Gaussian distribution 

Fig. 1. Some of the AlphaSim parameters that can be specified by the user, of which most can be changed during the course of a 
simulation. Asterisk denotes parameters that are immutable.

Symbol Definition†

a Vector of breeding values

â Vector of estimated breeding values

A Pedigree or genomic numerator relationship matrix

ak Additive effect at QTN k simulated for a given trait

a k
Average allele substitution effect at QTN k computed for a  
given trait

b Vector of SNP effects

ˆ
jb

Estimated effect of SNP j

dk Dominance effect at QTN k computed for a given trait

d k Dominance degree at QTN k simulated for a given trait

e Vector of residual effects

ei,r Residual effect for individual i and trait r

gEBVi Genomic estimated breeding value of individual i

Symbol Definition†

H 2 Broad-sense heritability

h 2 Narrow-sense heritability

i Indicates a given individual, varies from 1 to nIndiv

j Indicates a given SNP, varies from 1 to nSNP

k Indicates a given QTN, varies from 1 to nQTN

LA, LE Lower triangular matrix obtained from the Cholesky 
decomposition of VA and VE

,r sAL , LE r s,

Entry of LA and LE between traits r and s

l Penalty factor applied on the loss of genetic diversity in  
optimal contribution selection

md
User-specified mean dominance degree

m Intercept of the regression models (Eq. [10] and [12])

m0
Mean value of the base generation of the pedigree

(cont’d.)

Table 1. List of symbols.
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with mean zero and unit variance or a Gamma distribu-
tion with user-defined shape and scale parameters. If 
a Gamma distribution is used, the deviates are scaled 
to unit variance by dividing by the expected standard 
deviation of the distribution, which is the square root 
of the product of the shape parameter and the square of 
the scale parameter. These scaled Gamma deviates are 
then randomly assigned to have either a positive or nega-
tive effect. The final additive genetic value for each QTN 
locus is obtained as follows:

2
a

QTN

RandDevk n
a

s
=  [1]

where RandDev is a random deviate from either the 
Gaussian distribution or the scaled Gamma distribution, 
and 2

as  is the a priori additive genetic variance specified 
by the user.

Dominance genetic values are assigned to QTN 
following the methods of Wellmann and Bennewitz 
(2011, 2012). First, dominance degrees, dk, are sampled 
from a Gaussian distribution with mean md and variance 

2
ds  specified by the user. The user can specify no 

dominance by setting both md and 2
ds  to zero. Values for 

dk are obtained as follows:

2RandDev k md dd = + s  [2]

where RandDev is a random deviate from a standard 
Gaussian distribution. The coded genetic values for 
dominance at each locus is then calculated as follows:

k k kd a=d  [3]

The coded genetic values are used to calculate true geno-
typic values (TGVs) for individuals and genetic variances 
in the base generation of the pedigree. For each indi-
vidual, TGV is calculated by summing its coded genetic 
value for its genotype across all QTN loci. An initial 
mean m0 is subtracted from that sum to set mean TGV in 
the base generation to zero:

( )QTN

, , , 01
TGV , ,   0, 1, 2

n
i k k k i k i k i kk

a d a x x x
=

é ù= - = = = -mê úë ûå [ 4 ]

The total genotypic variance in the base generation 
s

0

2
g  is calculated by taking the variance of TGV in the 

base generation.
Calculating the additive and dominance components 

of genetic variance requires first calculating the average 
allele substitution effect ak for each QTN locus (Ber-
nardo 2010):

( )k k k k ka d q pa = + -  [5]

where pk and qk are the frequencies of the nonzero and 
zero alleles in the base generation. The average allele sub-
stitution effects are then used to calculate true breeding 
values (TBVs) for each individual in the base generation by 
summing breeding values at each locus (Bernardo, 2010):

( )
=

é ù= - a - a aê úë û
é ù´ = = =ê úë û

å QTN

1

, , ,

TBV 2 , , 2

         0, 1, 2

n
i k k k k k k kk

i k i k i k

p q p q

x x x
 

[6]

Symbol Definition†

n Indiv No. of individuals

nQTN Total no. of unrestricted or frequency-restricted QTN in the 
genome

nSNP Total no. of SNP in the genome

n Traits No. of simulated traits

pEBVi Pedigree-estimated breeding value of individual i

pk , qk Frequencies of the nonzero and zero alleles, respectively, at QTN 
k in the base generation of the pedigree

r, s Indicate two distinct traits: r varies from 1 to nTraits, and s varies 
from 1 to r

RandDev Random deviate sampled from a Gaussian or Gamma distribution

s2
a

A priori additive genetic variance specified by the user for a given 
trait

s
0

2
a

Additive genetic variance computed for a given trait in the base 
generation

s
tr

2
a

Additive genetic variance computed in the training population 
using the TBV of the training individuals.

s2
b

Variance of the SNP effects

s
0

2
d

Dominance genetic variance computed for a given trait in the 
base generation

ds
2 User-specified variance of the dominance degrees

s2
e Residual variance computed for a given trait

s
0

2
g

Genotypic variance computed for a given trait in the base 
generation

TBVi , TDVi , TGBi True breeding value, true dominance value, and true genotypic 
value of individual i for a trait characterized by a given set 
of QTN, unrestricted or frequency-restricted, and a given 
distribution, Gaussian or Gamma

VA , VE Additive genetic and residual correlation matrix, respectively, 
dimensions nTraitsnTraits 

x Vector providing the contribution of each selection candidate to 
the next generation

X Incidence matrix linking phenotypes to b

xi ,k , xi, j Genotype of individual i at QTN k or SNP j, coded as 0, 1, or 2 
according to the number of copies of the nonzero allele

y Vector of phenotype records

Z Incidence matrix linking phenotypes to a

† QTN, quantitative trait nucleotide; SNP, single-nucleotide polymorphism.

Table 1. Continued.
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The average allele substitution effects are also used to cal-
culate true dominance values (TDV) for each individual 
in the base generation by summing dominance devia-
tions at each locus (Bernardo 2010):

( )QTN 2 2

1

, , ,

TDV 2 , 2 , 2

        [ 0, 1, 2]

n

i k k k k k k kk

i k i k i k

p d p q d q d

x x x
=

= − −

× = = =
∑

		
  

[7]

The additive genetic variance in the base generation 0

2
as  

is calculated by taking the variance of the TBV, and the 
dominance genetic variance in the base generation 

0

2
ds  is 

calculated by taking the variance of the TDV (Bernardo, 
2010). Since these calculations, except TGV, depend on 
allele frequencies, AlphaSim recalculates each in sub-
sequent generations using the generation specific allele 
frequencies. This means that only TGV and not TBV and 
TDV should be compared across generations.

Fig. 2. Principle of an AlphaSim simulation illustrated using a pedigree structured in four burn-in generations and one selection 
generation for two traits characterized by an additive genetic model. (1) Haplotype sequences and an internal pedigree are simulated. 
(2) Haplotypes are recombined and dropped into the base generation of the pedigree. At this step, single-nucleotide polymorphisms 
(SNPs) and quantitative trait nucleotides (QTNs) are selected. (3) An effect is assigned to each QTN, and, for each individual of the 
base generation of the pedigree, genetic values are calculated and phenotypes simulated. (4) Haplotypes of the base generation are 
recombined and dropped into the burn-in generations of the pedigree successively. Similar to the base generation, genetic values are 
calculated and phenotypes simulated for each individual of the burn-in generations. (5) A selection generation is simulated according 
to the selection method and strategy as defined by the user.
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Phenotypes are simulated by adding a random residual 
deviate to each individual’s TGV. The residual deviates are 
sampled from a Gaussian distribution with mean zero and 
a variance equal to the residual variance 2

es . The residual 
variance is calculated so as to obtain the user defined value 
for trait heritability. The user defines the heritability as 
either broad-sense heritability, H2, or narrow-sense heri-
tability, h2. If the user defines broad-sense heritability, the 
calculation for residual variance is as follows:

s
s = -s0

0

2
g2 2

g2e H
 [8]

If narrow-sense heritability is defined, the calculation for 
residual variance is the following:

s
s = -s0

0

2
a2 2

e g2h
 [9]

Fourth Step: Drop Haplotypes into the Burn-In 
Generations (Fig. 2, Step 4)
AlphaSim distinguishes burn-in and selection genera-
tions. If the pedigree is internally simulated, burn-in 
generations are generated by mating randomly selected 
parents. Internally simulated selection generations are 
generated by mating parents selected via different selec-
tion methods. The generation size and number of parents 
in each generation can be constant or variable. AlphaSim 
allows for three distinct types of matings regarding the 
sex of parents: (i) crosses between male and female indi-
viduals, (ii) crosses between bisexual individuals used as 
male and female parents interchangeably while prevent-
ing selfing, and (iii) selfing. Note that an external pedi-
gree can also be imported for any selection generation 
and combined with the internally simulated pedigrees so 
that almost any pedigree structure can be defined. If an 
external pedigree is provided, the user has the option to 
run the breeding program using only the individuals in 
the external pedigree or to extend the external pedigree 
with simulated generations. Extension of the supplied 
pedigree or internal simulation of the pedigree from the 
first generation both require the user to specify the num-
ber of generations, the size of each generation, the num-
ber of parents for each generation, and the mating design 
to be used in each generation.

Fifth Step: Perform Selection and Simulate  
New Generations (Fig. 2, Step 5)
Selection in AlphaSim proceeds by selecting individuals in 
a given generation to become parents of the next genera-
tion. Truncation selection is used by default, that is, the 
best-performing individuals are selected. The number of 
individuals to be selected can be made constant or vari-
able across generations, and selection can be performed 
with or without considering gender. AlphaSim enables 

the selection of individuals based on their TGV, TBV, 
genomic-estimated breeding values (gEBVs), pedigree-
estimated breeding values (pEBVs), or phenotypes; all 
are obtained using the set of pedigree, SNP, and QTN 
that characterize the trait under selection as specified by 
the user.

For computation of both gEBV and pEBV, a training 
population and a test population are defined. The train-
ing population is used to estimate the model parameters, 
while the test population is used to quantify the accuracy 
of selection. The test population includes the individuals 
that will become parents of the next generation. There 
are several options for constructing the training popula-
tion: (i) include all individuals in all generations up to 
the current generation, (ii) include all individuals in all 
generations up to and including the current generation, 
(iii) include all individuals in the previous generation 
only, (iv) as in (ii) but using information from males only, 
(v) random sampling of a given number of individuals 
from a range of generations, or (vi) user-specified set of 
individuals. For each of these options, AlphaSim allows 
the use of the same training set across different user-
specified selection generations. This latter possibility can 
be used in combination with an externally defined train-
ing population to simulate complex selection processes.

To compute gEBV, the phenotypes of the training 
individuals are regressed onto SNP genotypes in a ridge 
regression model (Hoerl and Kennard, 1976; Whittaker 
et al., 2000; Meuwissen et al., 2001):

=m+ +y Xb e  [10]

where y is a vector of phenotype records, m is the inter-
cept, ( )2

b0,N sb I  is a vector of allele substitution 
effects, X is the incidence matrix linking phenotypes 
to b , ( )2

e~ 0,N se I  is a vector of residuals, and 2
es  and 

2
bs  are respectively variances of residuals and SNP 

allele substitution effects. The ridge regression is solved 
through a call to the program AlphaBayes with the vari-
ance components set to the simulated values; 2

es  is 

residual variance and tr

2
a2

b
SNPn

s
s =  where 

tr

2
as  is the additive 

genetic variance in the training population computed 
using the TBV of the training individuals with training 
population allele frequencies. Finally, AlphaSim com-
putes gEBV for the selection candidates using their SNP 
genotypes and the estimated SNP effects ˆ

jb :

SNP

,1
ˆgEBV

n
i i j jj

x b
=

=å  [11]

Computation of pEBV is based on regressing the phe-
notypes onto pedigree using the standard mixed model 
(Henderson, 1984):

=m+ +y Za e  [12]
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where y is a vector of phenotype records, m is the inter-
cept, ( )

tr

2
a 0,N sa A  is a vector of breeding values with 

A as the pedigree numerator relationship matrix calcu-
lated from an optional number of ancestral generations, 
Z is the incidence matrix linking phenotypes to a, and 

( )2
e 0,N se I  is a vector of residuals. The pedigree regres-

sion is solved through a call to the program AlphaBayes 
with the variance components set to the simulated values.

Additional Features

Multiple Traits
AlphaSim allows the simulation of multiple traits, mul-
tiple environments, and genotype ´ environment (G 
´ E) interactions with the restriction that correlated 
traits must all be characterized by the same set of QTN 
(although not all of the QTN in this set need to affect 
both traits). All the traits are simulated for each individ-
ual. When simulating different traits, the user specifies 
the a priori additive genetic variance and the heritability 
of each of the traits and the genetic and residual correla-
tions between traits (Fig. 2, Step 3). The a priori additive 
genetic variances and the additive genetic correlation 
matrix are used to derive the additive genetic covariance 
matrix, VA. After Cholesky decomposition, T=A A AV L L ,  
the Cholesky factor LA is used to compute additive 
genetic effects for each QTN k and trait r:

Traits ,A
, 1 1

QTN

RandDev r sn r
k r r s

L
a

n= =
=å å  [13]

where r and s are trait indicators, nTraits is the number 
of traits, and RandDev is a random deviate sampled as 
in Eq. [1]. The dominance genetic effects of QTN are 
assumed independent and simulated as in Eq. [2, 3]. The 
correlated additive genetic effects (Eq. [13]) are further 
used to compute TGV and allele substitution effects as 
detailed for the simulation of a single trait (Eq. [4, 5]).

The correlated residual effects are generated for 
each trait in a process that is similar to that of the cor-
related additive genetic effects. The residual variances are 
computed given the specified trait heritabilities and the 
genetic variances in the base generation of the pedigree. 
The residual variances are then used jointly with the 
specified residual correlation matrix to derive the resid-
ual covariance matrix VE. After Cholesky decomposition, 

= T
E E EV L L , the Cholesky factor LE is used to compute 

residual effects ei,r for each individual I and trait r:

Traits

,, E1 1
RandDev

r s

n r
i r r s
e L

= =
=å å  [14]

where RandDev is a random deviate sampled from a 
standard Gaussian distribution.

When simulating multiple traits and performing 
selection, a selection index is used to rank individuals. 
The selection index weights the values of each of the 

traits as specified by the user. The input values for the 
selection index can be TBV, gEBV, pEBV, or phenotypes.

Doubled-Haploids
AlphaSim allows the use of DHs. Doubling can be 
achieved for all individuals included in any given genera-
tion as specified by the user. Operationally, AlphaSim 
simulates DHs by first generating a recombined gamete 
from the two haplotypes of an individual and then dou-
bling this gamete to produce a diploid individual with 
identical haplotypes.

Genome Editing
Genome editing is a new technology that has great 
potential for empowering breeding programs. In recent 
years, several applications of genome editing have been 
demonstrated in plant breeding. For example, heritable 
resistance to powdery mildew has been conferred to 
bread wheat by simultaneously editing three homeologs 
(Wang et al., 2014). In maize (Zea mays L.), editing tech-
nologies were used to modify endogenous loci and add 
an herbicide tolerance gene at a targeted locus (Shukla 
et al., 2009). To evaluate the potential of genome editing 
in breeding programs, genome editing functionality has 
been added to AlphaSim and demonstrated in an animal 
breeding application by Jenko et al. (2015). This function-
ality gives the user the capacity to determine the number 
of individuals to be edited if these are the top or bottom 
ranked individuals among the selected and the number 
of QTN to be edited for each individual. The QTN to be 
edited are selected in descending order of magnitude of 
their effect, that is, the QTN with large effect in absolute 
value are preferentially edited. AlphaSim then performs 
gene editing such that each edited individual bears the 
favorable allele in a homozygous state at the edited QTN.

Breeding by Optimal Contribution Selection
In addition to truncation selection, AlphaSim can per-
form optimal contribution selection, which seeks to find 
the balance between maximizing the response to selec-
tion and minimizing the loss of genetic variance and 
thereby increases the opportunity for greater response 
to selection in the long term (Wray and Goddard, 1994; 
Meuwissen, 1997).

Broadly, optimal contribution selection works by 
optimizing the contributions of each individual to the 
next generation by maximizing the genetic mean of the 
selected individuals while minimizing the genetic relat-
edness between them, that is, minimizing inbreeding of 
the next generation. In AlphaSim, optimal contribution 
selection is performed by calling the program Alpha-
Mate, which maximizes the following objective:

T
T ˆ

2
-l

x Axx a  [15]

where x is a vector of contributions of each individual 
to the next generation, â  is the vector of estimated 
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breeding values of selection candidates, T ˆx a  is the 
mean genetic merit passed to the next generation, l is 
an unknown penalty on the loss of genetic diversity, 
A is the pedigree or genomic numerator relationship 
matrix between the selection candidates, and T / 2x Ax  
is an average expected inbreeding in progeny (Wray and 
Goddard, 1994; Meuwissen, 1997). AlphaMate searches 
for the value of penalty that gives the user a specified 
allowed increase in rate of inbreeding, and given that 
value, solves Eq. [15] for the vector of contributions x.

Flexibility
AlphaSim includes three restart functionalities, which 
make it more flexible than the packages from which it is 
derived. The first restart functionality enables a simula-
tion process to be stopped after a user-specified genera-
tion and to be resumed with some program parameters 
changed. For example, truncation selection could be 
used for a number of generations, and then the simula-
tion is stopped and resumed with optimal contribution 
selection activated or using an alternative genomic selec-
tion training population or SNP panel. This feature also 
enables the simulation of a base population from which 
different scenarios can be derived or the combination 
of external and internally simulated pedigrees for both 
burn-in and selection generations.

The second restart functionality makes AlphaSim 
flexible in terms of the method used to perform selec-
tion. Selection methods or statistical methods that are 
not implemented in AlphaSim (e.g., marker-assisted 
selection) can be applied using third-party software to 
analyze simulated data, select individuals, and mate 
them, and the externally created pedigree can then be 
imported into AlphaSim. This functionality thus allows 
the use of any user-defined pedigree structure in one or 
more selection generations. For this purpose, AlphaSim 
provides the user with information about the genotypes, 
phenotypes, TGV, and TBV of both selection candidates 
and training individuals as well as the gEBV or pEBV of 
the selection candidates obtained through a call to the 
program AlphaBayes.

The third restart functionality enables output from 
different AlphaSim runs to be merged into a single run. 
This enables further flexibility and parallel processing. 
The merge functionality can be used in two ways. The 
first is to merge information across a range of AlphaSim 
runs, that is, by run directory merge. The second way is to 
merge information from specified sets of individuals from 
a range of runs, that is, by individual merge. This means 
that the user has the choice of independently performing 
selection at the end of each run and then combining spe-
cific individuals to form a new merged population.

For example, one AlphaSim run can be performed to 
generate a base population. From this base population, 
100 AlphaSim runs can be spawned in which each run 
would generate a biparental family from two inbred par-
ents. Because these runs all spawn from the same base 
population, the genetic architecture of traits and other 

parameters of the founding population is shared between 
the biparental families. Once these 100 runs are finished, 
another run of AlphaSim can be performed in which 
a subset of the individuals from each of the biparental 
families can be selected and merged into a single popu-
lation, forming a selected set of lines that can serve as 
parents of a new set of biparental families. This process 
of splitting and merging can be repeated several times in 
many different ways.

Output and Data Storage
The output files of AlphaSim are organized in three 
directories: Chromosomes, Selection, and Simulated-
Data (Fig. 3). The Chromosomes directory stores detailed 
information about the segregating sites, SNP panels, and 
QTN as well as the phased haplotypes and genotypes of 
the simulated individuals for each chromosome and for 
each generation. The Selection directory stores the infor-
mation required to perform selection for each selection 
cycle: the TGV of the selection candidates when selection 
is based on TGV, the TBV when selection is based on 
TBV, their phenotypes when selection is based on pheno-
types, and the SNP genotypes of both the training indi-
viduals and selection candidates and the phenotypes of 
the training individuals when selection is based on gEBV. 
It also stores the input and output files of AlphaBayes 
when selection is based on estimated breeding values and 
the input and output files of AlphaMate when optimal 
contribution selection is used. The SimulatedData direc-
tory stores results of the simulation process. This direc-
tory includes the pedigree; the gender of each individual; 
the simulated TGV, TBV, and phenotypes; the allele 
frequency and physical position of each SNP and QTN; 
the simulated QTN effects; the SNP and QTN genotypes; 
and the trait variance components.

AlphaSim has an efficient system of data storage 
that makes the simulation of whole-chromosome haplo-
type sequences in very large pedigrees computationally 
feasible. This system includes, among other aspects, the 
representation of strings of zeros and ones in segments 
of genome as long integers, meaning that more sequence 
information can be stored in a given segment of memory. 
Also, the user can define a rate at which the genome is 
reduced in its representation, which specifically means 
that only a portion of the segregating sites in the base 
haplotypes are used in the subsequent part of the simula-
tion. This option allows a reduction in the computational 
time and memory requirements for the simulation while 
maintaining all or most of its properties depending on 
the aims of the simulation. Additionally, standard file 
zipping procedures are used to compress the larger files.

AlphaSim makes extensive use of the hard disk to 
store files, which allows the required virtual memory 
to be managed. The files are stored in the Chromo-
somes directory and account for the largest part of disk 
space that is used by the simulation process. To release 
this disk space, the user has the option to discard the 
files stored in the Chromosomes directory once the 
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simulating process has ended. Finally, the user can use 
the flexibility of AlphaSim to further reduce memory and 
storage requirements by breaking large simulations into 
manageable blocks (by generation or biparental family, 
etc.) using the restart functionality.

Results
In this section we provide four examples of plant breed-
ing programs simulated using AlphaSim and illustrate 
the computational requirements of the software. We have 
demonstrated some examples of the animal breeding 
applications elsewhere (e.g., Hickey et al., 2011; Gorjanc 
et al., 2015a,b; Jenko et al., 2015).

Example 1: Genomic Best Linear Unbiased 
Prediction selection and Genotype ´ 
Environment Interactions in Biparental Families
We simulated a pedigree comprising five biparental 
families in which recombinant inbred lines (RILs) were 
selected and evaluated in contrasting environments 
using an experimental design with several replicates. 
Each biparental family was derived from a cross between 
two DH lines. Selfing each of the five F1 individuals was 
simulated to result in four F2 individuals per family, that 
is, 20 F2 individuals in total. The F2 individuals were 
then selfed through a single-seed descent process for 
eight generations to simulate 20 F10 RILs. Five F10 RILs 
were selected based on their gEBV to generate a new 
generation. In total, the pedigree included 12 burn-in 

generations and one selection generation (Fig. 4). Because 
performing genomic selection requires the presence of 
a population of individuals for which both phenotypes 
and SNP genotypes are available to train the prediction 
Eq. [10], a base generation including a large number of 
individuals (e.g., 1000 individuals) was simulated. As 
illustrated in Fig. 4, the number of individuals and the 
number of parents to be selected for each generation was 
specified according to the applied mating design. Alpha-
Sim then simulated the pedigree so the plants in a given 
generation were equally distributed among the matings.

Genotype ´ environment interactions were simu-
lated using the multiple traits capability of AlphaSim 
with each trait representing a distinct environment. The 
heritability was set to 0.8 and 0.2, respectively, for the 
Environment 1 and 2. The a priori additive genetic vari-
ance was set to 1.0 in both environments, the genetic 
correlation between the environments was set to 0.8, 
and the residual correlation was set to zero. Dominance 
effects were assumed to be null. This setting simulated a 
correlated G + G ´ E value for each individual in each 
of the two environments. These G + G ´ E values were 
a sum of the main genotypic effect and interaction with 
the environment. Adding independent residuals gave rise 
to phenotypic values in each of the two environments.

Genomic selection was conducted in F10 by using 
the default truncation selection method. The five best-
performing F10 RILs were selected based on their gEBV. 
For this purpose, the training population was comprised 
of the 1000 individuals from the first generation of the 

Fig. 3. Output of AlphaSim by directory.
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pedigree. The SNP effects were estimated in each envi-
ronment independently using the genotypes of the train-
ing individuals and their phenotypes, which were simu-
lated in each environment. The gEBVs were then com-
puted in each environment independently before being 
integrated into selection indices using the provided index 
weights. Here, the same importance was given to each 
environment by setting the index weights to 0.5. Finally, 
selection was performed in F10 based on the genomic-
estimated selection indices.

The five selected F10 plants were selfed to generate F11 
seeds. These latter were tested in the two distinct envi-
ronments with three replicates so that three phenotypic 
values were simulated for each RIL in each environment. 
The five simulated RILs showed contrasting performance 
in the two distinct environments (Fig. 5).

Example 2: User-Defined Selection  
in Biparental Families
A pedigree including five burn-in generations and one 
generation derived from selection was generated with a 
structure similar to Example 1 (Fig. 6). The best-perform-
ing F3 individual in each of the five biparental families 
was selected and selfed to create three F4 individuals. The 
selection of one single F3 individual in each family was 
achieved using the restart functionalities of AlphaSim. 

Specifically, the simulating process was stopped after 
the creation of the gEBV for the F3 individuals, enabling 
selection decisions to be made outside the program. The 
pedigree of Generation 6, that is, the pedigree of the F4 
individuals, was externally created and then imported 
into AlphaSim before resuming the simulation process.

Example 3: Eight-Parent Multiparent Advanced-
Generation Intercross Population
Some populations used in plant breeding have a pedigree 
structure that includes a very specific crossing scheme. 
For this example, we used the pedigree of an eight-parent 
multiparent advanced-generation intercross (MAGIC) 
population, whose power for the dissection of the genet-
ics of traits has been demonstrated (Mackay et al., 2014). 
The pedigree included a total of 561 individuals: the eight 
parental varieties, the 28 possible F1 individuals derived 
from crossing two parents (excluding reciprocal crosses), 
the 210 possible F2 individuals derived from crossing two 
unrelated F1 parents, and the 315 F3 individuals derived 
from crossing two unrelated F2 parents (Mackay et al., 
2014). Because of the specificity of the crossing structure, 
the pedigree of the eight-parent MAGIC population was 
constructed externally and then imported into Alpha-
Sim. Since externally imported pedigrees and inter-
nally simulated pedigrees are compatible in AlphaSim, 

Fig. 4. Simulation of the plant breeding pedigree in Example 1. The pedigree includes 12 burn-in generations (from founders to F10) and 
one selection generation (F11). Ten randomly selected founders are used to generate 10 double haploids (DHs). These DHs are crossed 
to simulate five unique F1 individuals. Selfing the F1 individuals results in 20 F2 individuals (i.e., four per one F1). The F2 genotypes 
are selfed through single-seed descent for eight generations to generate 20 F10 or recombinant inbred lines (RILs). Five RILs are then 
selected and selfed to create three F11 each.
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additional generations can be integrated into the MAGIC 
pedigree. This feature could be used to derive RILs from 
the 315 F3 individuals as demonstrated in Example 1.

Example 4: Plant Breeding Programs
A further plant breeding capability of AlphaSim is 
demonstrated with a simulation of the development of 
(pseudo) F4 RILs using single-seed descent combined 
with recurrent selection on F2 plants. The simulation 
included three scenarios that differed from each other by 
the number of cycles of recurrent selection: 0, 2, or 4 (Fig. 
7). The scenarios begin with a common pair of initial 
parents simulated using a single run of AlphaSim. Cross-
ing these parents generated the F1 population, which was 
then selfed to generate F2 plants. The output from this 
latter run was copied to three distinct new locations, in 
which each scenario was run using the flexibility option. 
Recurrent selection consisted of selecting the two best 
performing F2 individuals based on their gEBV and 
crossing them to generate new F2 plants (Fig. 7). Because 
the simulation did not include a training population for 
genomic selection, we took gEBV to be a phenotype with 
a heritability of 0.6. After completing all cycles of recur-
rent selection, F4 RILs were developed using single-seed 
descent. The resulting F4 RILs were used to compare the 
performance of the three scenarios (Table 2).

Computational Requirement
AlphaSim was benchmarked using the simulation of 
two distinct scenarios that were each run twice with or 
without requesting the full genome sequence to be writ-
ten out (Table 3). The two scenarios differed from each 
other by the number of segregating sites in the genome, 
the numbers of SNP and QTN, the size of the pedigree, 
and the size of the genomic selection training popula-
tion, all larger in Scenario 2 than in Scenario 1 (Table 
3). The genome was comprised of 10 chromosomes, each 
1 Morgan in length. In Scenario 1, MaCS used param-
eters relating to the historical effective population size, 

mutation rate, and recombination rate, resulting in an 
average of 71,190 segregating sites across the genome, 
while in Scenario 2, there was an average of 163,590 
segregating sites across the genome. Totals of 5000 and 
20,000 SNP, and 2500 and 10,000 QTN, respectively, 
were sampled from the segregating sites of Scenarios 1 
and 2. Two traits were simulated with heritability and 
variance–covariance components as described in Exam-
ple 1. The structures of the pedigrees were as described 
in Fig. 4. In Scenario 1, the pedigree included 1210 indi-
viduals distributed along the pedigree as shown in Fig. 4. 
In Scenario 2, the pedigree included 234,500 individuals; 
50,000, 2000, and 1000 individuals in Generations 1, 2, 
and 3, respectively; 20,000 in Generations 4 to 12; and 
1500 in Generation 13. Genomic selection was performed 
in Generation 12 using a training population of 1000 and 
30,000 individuals, respectively, that were sampled from 
the first generation of Scenarios 1 and 2.

Computations were performed on a Linux server. 
Scenario 1 was run using one CPU core with 2 GB of 
RAM available from a dual Intel Westmere E5620 2.4-
GHz quad-core processor. Scenario 2 was run using 12 
CPU cores with 5 GB of RAM available from dual Intel 
Westmere E5645 2.4-GHz six-core processors. For Sce-
nario 1, running time was 1 min 34 s and increased to 3 
min 39 s when the full sequence information was written 
to disk (Table 3). For Scenario 2, the running time was 4 
h 9 min 54 s and increased to 19 h 6 min 11 s when the 
full sequence was written to disk.

Discussion
AlphaSim is a new software package for simulating 
breeding program designs that use sequence data, pedi-
grees, genotypes, and phenotypes. Different mating sys-
tems enable simulation of plant or animal populations. 
AlphaSim extends the scope of the currently available 
plant breeding simulation packages because of its wide 
flexibility, enabling the design of almost any pedigree 
structure and the application of many selection methods, 
in particular genomic selection and genome editing as 
demonstrated in the above examples and other previously 
published work (Clark et al., 2012; Daetwyler et al., 2013; 
Hickey et al., 2014, 2015; Gorjanc et al., 2015a).

AlphaSim can be used for the simulation of small 
datasets in a very short time. Simulating large pedigrees 
with large genome sequence significantly increases 
the running time, particularly when writing the full 
sequence data to disk (Table 3). However, when simulat-
ing distinct scenarios characterized by the same SNP 
panels, QTN, and trait information, the simulation time 
can be significantly reduced using the restart functional-
ity of the software, that is, by deriving each scenario from 
a common base generation. For example, we have suc-
cessfully used this approach to simulate a wheat breeding 
program with genomic selection spanning 41 yr (overlap-
ping generations) with 1.7 million unique genotypes per 
year or a pig (Sus scrofa domesticus) breeding program 
with genomic selection spanning 30 yr (overlapping 

Fig. 5. Results of genotype ´ environment interaction simulated 
in Example 1. Five recombinant inbred lines (RILs) tested in three 
replicates in two contrasting environments with heritabilities of 
0.8 and 0.2.



12 of 14	 the plant genome  november 2016  vol. 9, no. 3

generations) with 35,000 unique genotypes per year (R.C. 
Gaynor and J.M. Hickey, unpublished data, 2016).

In conclusion, we make three points: (i) AlphaSim 
allows breeders and researchers to simulate genomic data 
controlled by very specific user criteria, to evaluate the 

power of diverse breeding programs, and to optimize 
their requirements in terms of sequencing, genotyping, 
and phenotyping resources; (ii) AlphaSim is flexible, 
computationally efficient, and easy to use for a wide range 
of possible scenarios; and (iii) AlphaSim was designed to 

Fig. 6. Simulation of the plant breeding pedigree in Example 2. The pedigree includes five burn-in generations (from founders to F3) 
and one selection generation. Ten randomly selected founders are used to generate 10 double haploids (DHs). These DHs are crossed 
to simulate five unique F1 genotypes. Selfing the F1 individuals result in 20 F2 individuals, four per F1. The F2 individuals are selfed 
through single-seed descent for one generation to simulate 20 F3, and the best performing F3 in each of the five biparental families is 
selected and selfed to create three F4 individuals.

Fig. 7. Simulation of the development of F4 derived recombinant inbred lines (RILs) using single-seed descent combined with recurrent 
selection on F2 plants. The simulation included three scenarios differing from each other by the number of cycles of recurrent selection, 
which was 0, 2, or 4. The scenarios begin with a common pair of parents, which were crossed to generate the F1 plants. Selfing the F1 
generated F2 plants. Recurrent selection consisted of selecting the two best performing F2 individuals based on their genomic estimated 
breeding values and crossing them to generate new F2 plants. The F4 RILs were then developed using single-seed descent.
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