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Abstract
Quality control (QC) of germplasm identity and purity is a critical component of breeding and

conservation activities. SNP genotyping technologies and increased availability of markers

provide the opportunity to employ genotyping as a low-cost and robust component of this QC.

In the public sector available low-cost SNPQC genotyping methods have been developed

from a very limited panel of markers of 1,000 to 1,500 markers without broad selection of the

most informative SNPs. Selection of optimal SNPs and definition of appropriate germplasm

sampling in addition to platform section impact on logistical and resource-use considerations

for breeding and conservation applications whenmainstreaming QC. In order to address

these issues, we evaluated the selection and use of SNPs for QC applications from large

DArTSeq data sets generated from CIMMYTmaize inbred lines (CMLs). Two QC genotyping

strategies were developed, the first is a “rapid QC”, employing a small number of SNPs to

identify potential mislabeling of seed packages or plots, the second is a “broad QC”, employ-

ing a larger number of SNP, used to identify each germplasm entry and to measure heteroge-

neity. The optimal marker selection strategies combined the selection of markers with high

minor allele frequency, sampling of clustered SNP in proportion to marker cluster distance

and selecting markers that maintain a uniform genomic distribution. The rapid and broad QC

SNP panels selected using this approach were further validated using blind test assessments

of related re-generation samples. The influence of sampling within each line was evaluated.

Sampling 192 individuals would result in close to 100% possibility of detecting a 5% contami-

nation in the entry, and approximately a 98% probability to detect a 2% contamination of the

line. These results provide a framework for the establishment of QC genotyping. A compari-

son of financial and time costs for use of these approaches across different platforms is dis-

cussed providing a framework for institutions involved in maize conservation and breeding to

assess the resource use effectiveness of QC genotyping. Application of these research find-

ings, in combination with existing QC approaches, will ensure the regeneration, distribution

and use in breeding of true to type inbred germplasm. These findings also provide an effective

approach to optimize SNP selection for QC genotyping in other species.
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Introduction
The CIMMYT (International Maize andWheat Improvement Center) Maize Lines (CMLs) are
a set of 577 elite inbred lines, which have been developed over the last 25 years. The CMLs rep-
resent one of the most widely distributed sources of publically generated elite lines, which are
freely available to both public and private sector breeders, research and growers, worldwide.
Distributed under the Standard Material Transfer Agreement (SMTA) of the International
Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA), these lines have
become the most important public tropical maize germplasm source globally [1]. Since 2005
the conservation, regeneration and distribution of CMLs has been the responsibility of the
CIMMYT Germplasm Bank (CGB). The CMLs are the most requested accessions that the
CGB holds and as such are subject to the most frequent regenerationsTherefore, during which,
the possibility for contamination is always present. In order for CGB to maintain these materi-
als as true to type, pure and stable lines, we determined that a stringent QC genotyping system
should be implemented.

Control and understanding of germplasm identity and purity are two fundamentals of
germplasm management, be it for breeding or conservation [2–4]. Inability to rapidly and cost
effectively assess these characteristics restricts the accuracy and precision of breeding and may
have an impact on the integrity and usefulness of genebanks. Molecular markers have been
widely used to understand the genetic relationships among species, populations and individu-
als, and also to identify the causal loci for specific traits [5–10]. They have several advantages as
compared to morphological markers, including high polymorphism, high-throughput detec-
tion methods, and they are unaffected by environmental conditions or the physiological stage
of the plant [11,12]. Germplasm QC genotyping based on molecular markers has long been
proposed as an effective component of QC [13–15].

A Single nucleotide polymorphism (SNP) is a single base difference within otherwise
identical sequences of DNA found at one position in the genome. In recent years, the adop-
tion of next generation DNA sequencing technologies has significantly increased the num-
ber of SNP markers available for use in crops [16,17]. Genotyping by sequencing (GbS) and
other sequence based technologies like DArTSeq have evolved as one of the principal meth-
ods for next generation sequence based genotyping. A variety of approaches for sequence
based genotyping can be employed, each tailored for different applications. For example the
GbS methods developed and used at Cornell University [18] generate a very high density of
markers (>800,000 SNP) with relatively low coverage (depth of sequencing at particular
loci, 0.5X) and a missing data rate of more than 50%. These data are very effectively used
with studies employing structured populations where imputation is deployed with high
accuracy to address missing data and generate heterozygote calls [19]. This GbS approach is
critical in studies involving genome wide association where high marker density is a requi-
site. In contrast, other approaches currently used in maize, like DArTseq [20], generate a
lower density of markers (50,000 to 350,000 SNP) but have much higher coverage and lower
levels of missing data (20% and lower) in comparison with Cornell implementations of GbS
for maize. The additional identification of presence absence variation (a further 40,000 to
200,000 markers) and ability to directly score heterozygotes/heterogeneous samples with
this lower density approaches has broad application in diversity related and genomic selec-
tion applications. Given the high numbers of markers available, relatively low cost and high
speed of detection, SNPs are currently considered to be the optimal marker type for QC gen-
otyping in crops [21–24].

A number of studies have addressed various aspects of QC genotyping in maize. Semagn
et al. used a total of 28 maize inbred lines to study genetic identity among different seed
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sources, genotyping them with 532 and 1,065 SNPs using the KASP and Golden-Gate plat-
forms, respectively [14]. The results showed the proportion of alleles differing between seed
sources of the same inbred line varied from 0.1 to 42.3%. Seed sources exhibiting high levels of
genetic distance were miss-labeled, while those with lower levels of difference were considered
to be contaminated or still segregating. The authors recommended using a subset of 50–100
SNPs for routine and low-cost QC genotyping, which was verified in a different set of double
haploid and inbred lines. In a second study, Ertiro et al., used 191 KASP and 257,268 imputed
Cornell GbS markers to evaluate the level of genetic purity (defined as homogeneity across
markers) and identity among two to nine seed sources of 16 inbred lines [25]. The results
showed genetic purity within each seed source varied from 49 to 100% for KASP and from 74
to 100% for GbS. There was high discrepancy both in genetic purity and identity by the origin
of the seed sources (institutions) irrespective of the type of genotyping platform and number of
markers used for analyses (100 and 191 KASP compared with all GbS). The correlation
between the KASP and GbS platform was 0.88 for purity and 0.93 for identity, suggesting that a
smaller subset of high quality markers are sufficient for QC analysis. These studies provide a
good framework regarding QC genotyping but they do not address the best approach to select
a defined sub-set of markers, optimized to facilitate QC genotyping, nor do they address in any
way the question of sampling of germplasm for QC genotyping (both studies involved the gen-
otyping of one bulk of DNA from 10 plants per entry).

A number of factors can impact the cost of generation of genotypic data for QC purposes.
The number of markers employed for QC genotyping can influence the cost per sample
depending to some extent on the genotyping platform selected; single plex systems like
KASP being influenced much more than array type and sequence based platforms. In addi-
tion, the number of sub-samples used for QC genotyping increases the cost per sample in a
platform independent manner. Different stages of breeding and germplasm bank activities
have varied tolerance to cost and accuracy of genotyping. For example, the development of
new breeding populations is a stage where breeders require higher accuracy of data (reflect-
ing the importance of inbreeding status in the maize pedigree breeding process). In addition,
due to lower numbers of breeding starts compared with subsequent sample volumes occur-
ring in the breeding discovery and selection processes, there is greater cost benefit to
increase marker number and number of samples genotyped to ensure accuracy of data and
data interpretation at this stage. Optimization of marker density and sampling strategy are
key factors in determining genotyping costs, these need to be balanced with the required
function/purpose of the genotypic data. Generation of and/or selection of sub-sets of high
quality markers for QC is an important decision for breeding and germplasm conservation
activities. Here we define an approach for selecting markers for two contrasting QC geno-
typing approaches. The first is a “rapid QC”, employing a limited number of SNPs to cost
effectively identify the mislabeling of seed packages or plots used to regenerate accessions in
the field. The second is “broad QC”, employing a larger number of SNPs, to identify each
line, and to estimate heterogeneity and, if individual plants are sampled, heterozygosity. The
costs and accuracy tradeoff in the application of these methods is also addressed across com-
mon platforms to provide breeders with information that they can use when determining
what platforms and levels of resolution they require from genotypic data. The effects of a
number of parameters on QC genotyping were studied: (1) the methods used to select mark-
ers; (2) the number of markers needed for broad QC versus rapid QC genotyping; (3) the
optimization of marker subsets for both QC genotyping approaches; and (4) the influence of
sample size on accurate identification of each line assessed.
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Materials and Methods

Plant Material and DNA extraction
Seed samples and the passport data of all of the 561 CMLs (available in 2014) were obtained
from the CGB [To order seed, go to: http://www.cimmyt.org/seed-request. To find more infor-
mation about CMLs, go to: http://hdl.handle.net/11529/10246]. These seed samples were deliv-
ered from the original seed lot provided to the CGB in 2005. In addition, seed samples of 22
CMLs from multiple regenerations were also obtained (S1 Table). Seedlings were established in
pots in screenhouses at the CIMMYT Headquarters farm in El Batán, Texcoco, Mexico. Leaf
tissue from 12 plants per sample were harvested, the tissue was lyophilized, and the DNA was
extracted from a composite of equal area (28 mm2) of leaf tissue from each individual plant
using a modified CTAB method [26]. DNA was quantified, diluted to equal concentration (200
ng/ul) and submitted for genotyping by DArTseq method to Diversity Arrays Technology
(DArT) (www.diversityarrays.com/).

Genotyping
A High-throughput genotyping method was conducted in 96 plex using DArTseqtechnology
[20,27]. A genomic representation of the set of samples was generated by digesting the genomic
DNA with a combination of two restriction enzymes, PstI (CTGCAG) and HpaII (CCGG),
and ligating barcoded adapters to identify each sample. For each 96 well plate, 16% of the sam-
ples were replicated to assess reproducibility. Equimolar amounts of amplification products
from each sample were pooled by plate and amplified by c-Bot (Illumina) bridge PCR, followed
by fragment sequencing on Illumina Hiseq 2500 (www.illumina.com). SNPs were called using
the DArTsoft analytical pipeline (http://www.diversityarrays.com/software.html#dartsoft).
Sequence analysis was conducted to align reads with the sequence tag based maize meta-
genome representation. A total of 88,600 unimputed SNPs were successfully called within the
CML dataset. Data derived from this analysis included both SNP calls and the number of
sequence reads per allele.

Data analysis
The characteristics of each SNP marker, such as allele frequency [28], heterogeneity, percentage
of missing and polymorphic information content (PIC) [29,30], were computed using the R
statistical package [31]. The coverage of each SNP was calculated as the average number of
reads per allele. The allele sharing distance matrix between all pairs of individuals was con-
structed as described by Gao and Starmer [32,33], and it was used to calculate the CML cluster
and the Principal Coordinate Analysis for CMLs. The maximum allele sharing distance is 2,
and the minimum distance is 0 (Allele sharing distance is two times the dissimilarity). The sim-
ilarity between two samples was calculated by the total number of identical alleles divided by
the total number of non-missing alleles, which was used in blind test to identify the samples.
The maximum similarity is 1, and the minimum is 0. The r2 of LD (linkage disequilibrium)
between two markers was calculated in R, using the method described by Devlin [34]. The
“complete”method of hclust function in R was used to cluster the populations and generate
the tree file, using the allele sharing distance matrix. The tree picture was generated by FigTree
v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). Principal Coordinate Analysis (PCoA) of all
CMLs was carried out using cmdscale function in R, and the PCoAs and categorical data were
plotted by CurlyWhirly v1.15 (http://ics.hutton.ac.uk/curlywhirly/). Principal component anal-
ysis (PCA) and K-means were used to group the SNP markers using the prcomp and kmeans
functions in R [35,36]. Some CML are trait conversions of earlier materials. Separation of these
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closely related converted lines from their CML parents is most easily achieved through use of
markers specifically associated with the introgressed trait. In order to identify the trait-specific
markers, trait values for the conversion characteristics QPM (quality protein maize) and imida-
zolinone resistance were evaluated using a numeric classification of each trait; 1 for presence of
trait and 0 absence (data available in http://hdl.handle.net/11529/10246). The allele case con-
trol test was then performed using PROC CASECONTROL function in SAS/Genetics V12.3 to
evaluate all markers’ p-value for QPM and imidazolinone resistance [37,38]. The most signifi-
cant marker from the analysis was used as a trait-specific marker.

To determine the influence of sample number on the accuracy of detecting off-types in QC
genotyping, we calculated the probability of finding at least one off-type from different sample
sizes for a set of defined levels of off-types (0.001, 0.01, 0.02, 0.05 and 0.1). The model assumed
that the marker detection power was hundred percent (the markers used could detect all off-
types in the available sub-samples). Using a binomial distribution, probability of detection at
least one off-type (P) was calculated using the following formula: P = 1 –(1-p)n, where n is the
sample size and p is the percentage of off-type expressed as a probability. Bayesian estimation
of the proportion of off-types in the population was used with a Beta prior distribution by the
“binom” library in R (R-project) [31]. To estimate the percentage of off-types in populations
based on known percentage of off-types in samples, the proportion of off-types in the popula-
tions were determined by the 0.95 percentile of the posterior distribution of the parameter p
for different sample sizes and number of off-types in the samples [39].

Results

SNP profiles
A total of 88,600 SNP markers were obtained from the DArTseq platform. SNPs were initially
filtered to remove SNPs with missing rate>40%, SNPs with minor allele frequency (MAF)<
5% and heterogeneity>10%, resulting in 18,082 markers used for subsequent analyses (S2
Table), these genotypic data are available in: http://hdl.handle.net/11529/10431. Per chromo-
some, the average marker heterogeneity was approximately 0.05, the proportion of missing val-
ues was close to 0.18, and the minor allele frequency (MAF) and polymorphic information
content (PIC) were around 0.16 and 0.25 respectively (Fig 1). The SNP mutation type analysis

Fig 1. Summary of the heterogeneity, minor allele frequency (MAF) and polymorphic information
content (PIC) of 18,082 selected SNPs.Chromosome assignments are indicated; where no BLAST position
was available, the chromosome is designated as “0”; The heterogeneity, MAF, percentage of Missing value,
PIC was shown in left y-axis, the number of marker for each chromosome was shown in right y-axis.

doi:10.1371/journal.pone.0157236.g001

The Development of Quality Control Genotyping Approaches

PLOS ONE | DOI:10.1371/journal.pone.0157236 June 9, 2016 5 / 17

http://hdl.handle.net/11529/10246
http://hdl.handle.net/11529/10431


indicated that 60.7% of the SNP mutations belong to A/G, T/C type; the remaining mutations
belong to A/C, T/G type (19.5%), and A/T, C/G type (19.8%).

PCoA of CMLs using selected SNPs produced clear separation of groups based on adapta-
tion (S1 Fig) and grain color (S2 Fig). Hierarchical clustering showed clear definition by germ-
plasm source, with CMLs clustering into anticipated population-based groups (S3 Fig). These
results were as expected and confirm that the genotypic data gave clear and accurate represen-
tations of the genetic space of the CMLs. All paired CMLs showed a mean polymorphism of
27.5%, similar to the results obtained using other genotyping platforms, i.e., KASP and Illu-
mina Golden-Gate [14].

Analysis of methods to enable selection of markers for QC
In order to select the most informative markers for QC, a number of different marker parame-
ters were evaluated, including MAF, marker group, coverage, and chromosome position (Fig
2). The markers were separated into three groups with similar number of SNPs by MAF: 1)
MAF< 0.15; 2) MAF between 0.15 and 0.25; 3) MAF> 0.25. A random selection of all MAF
was also evaluated as a control (Fig 2A). Comparison of the effect of different SNP MAF on
proportion of CML pairs not distinguished showed the higher MAF SNP had improved effi-
ciency to distinguish CMLs from one another. Selection of higher MAF would therefore
enhance the effectiveness of QC genotyping applications (Fig 2A).

Fig 2. Analysis of methods to enable selection of markers for QC genotyping. a: MAF effect. Random selection (Random);
MAF < 0.15 (0.05–0.15); MAF between 0.15 and 0.25 (0.15–0.25); MAF > 0.25 (>0.25); b: Marker Group effect on select marker for QC.
Random selection (Random); Same percentage of marker from each marker group (PG); same number of markers selected from each
group (NG); Keep the proportion of each group distance (PGD). c: Marker coverage effect. Random selection (Random); Coverage < 2
(0–2); Coverage between 2 and 15 (2–15); Coverage >15 (>15). d: Marker distribution effect. Standard error bars are shown.

doi:10.1371/journal.pone.0157236.g002
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In order to evaluate the effect of marker group, markers were clustered into groups using
PCA and K-means methods [35,36] (S4 Fig). Random selection of markers from each of the
five groups defined was conducted based on a series of selection criteria; 1) Complete random
selection without marker group information (Random); 2) Equal proportions of markers
selected from each marker group (PG); 3) Equal number of markers from each group (NG); 4)
A number of markers selected from each group proportional to average group distance (PGD).
The effects of the four selection methods were studied based on 50 random samplings. There
was no difference between Random and PG selection with respect to the ability to distinguish
of CML pairs. NG and PGDmethod produced similar results, however, the PGD method pro-
duced a little better separation of CMLs at a lower marker number (Fig 2B).

Assessment of marker coverage (sequencing depth at a marker locus) showed that coverage
was proportional to heterogeneity and inversely proportional to missing data measures, as
would be expected. The increase in measured heterogeneity with increasing coverage reflects
the improved probability of sampling multiple variants at a locus if they exist (S5 Fig), while
the probability of sampling any allele at a locus increases with coverage, hence influenced by
technically missing data. Above a coverage threshold of 2 there was less variation in both miss-
ing data and heterogeneity as coverage was increased. Based on this result and number of mak-
ers at different coverage threshold, SNPs were separated into three groups for analysis of
coverage effect on marker selection for QC: 1) Coverage< 2; 2) Coverage between 2 and 15; 3)
Coverage> 15. A random selection of markers was used for comparison. Marker coverage
between 2 and 15 had the highest efficiency to distinguish different CML, indicating that this
range of coverage was optimal for CML differentiation (Fig 2C).

Marker distribution effects were studied by comparing randomly distributed markers versus
markers with uniform distribute across chromosomes. Uniform marker selection demon-
strated a better separation of CMLs than random selection (Fig 2D).

In the CML panel, there were two simple traits, quality protein maize (QPM), controlled by
the o2 gene [40,41] and native imidazolinone resistance (IR) controlled by the als2 gene [42], that
have been introgressed via backcrossing to convert existing CMLs. Conversions result in new lines
with novel features which can be difficult to distinguish visually from the recurrent CML parents
in a rapid manner without equipment. It was therefore important to include trait-specific markers
to enable differentiation of these converted lines from their recurrent parents. For example,
CML503 is the QPM converted version of CML264, and CML523 is the IR converted version of
CML445 (S3 Table). Using Genome-Wide Association Study (GWAS) to assess introgression,
two trait-specific markers were defined for application in CML QC genotyping (Fig 3).

Based on the analysis of the effects of marker characteristics on the accuracy of QC genotyp-
ing for CMLs, the following marker selection rules were implemented to define markers for
evaluation: 1) Marker coverage between 2 and 15; 2) Missing value less than 20%; 3) Remove
SNPs without chromosome information; 4) Marker heterogeneity less than 6%; 5) Inclusion of
QPM and IR specific markers. Using these stringent marker selection criteria, 193 markers
across the whole genome were chosen for re-sampling analysis.

A series of between 40 to 100 markers were randomly selected from the defined panel of
markers, based on uniform chromosome distribution and PGD. This selection, compared with
random selection, provided a better definition of CMLs (Fig 4). Analysis also indicated all
CMLs could be distinguished very well using 80 markers, suggesting that for systems based on
single plex assays, where increasing markers results in increasing cost, 80 selected markers
would provide sufficient information for CML broad QC genotyping, given the current
makeup of the CML panel. For chip or sequence based SNP detection systems, where marker
number is not a major cost constraint, it would be highly desirable to increase the marker num-
ber in order to improve accuracy and enable the addition of further unknown lines.
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Definition of SNPs for QC
In order to define the best 80 SNPs for broad QC, replicated randomized re-sampling of SNPs
from the panel of 193 SNPs was conducted, including the QPM and IR trait-specific markers
(2,000 reps). Of the 2,000 re-sampled sets, five subsets could successfully distinguish all CMLs. In
order to identify the best subset of the five, the ability of each subset to differentiate pair-wise

Fig 3. Association analysis indentifies QPM and imidazolinone resistance markers.

doi:10.1371/journal.pone.0157236.g003

Fig 4. Comparison of the effect of the final marker selection rules versus randommarker selection on
the proportion of CML pairs not distinguished from one another.

doi:10.1371/journal.pone.0157236.g004
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CML comparisons was assessed (Fig 5A). Subset S1666 (S2 Dataset) showed the highest ability to
distinguish CMLs and as such was considered the best subset for broad QC. For rapid QC geno-
typing, fewer than 80 markers would be desired by most breeding programs in situations where
single plex marker systems were used (lower cost and faster data return). The separation of
CMLs was evaluated using replicated random re-sampling (100 reps) of between 6 to 20 markers
within subset S1666. Six markers could identify 90% to 94% of cases of miss-identity, while ten
markers could identify error in 97% to 99% of cases (S6 Fig). Ten markers were considered suffi-
cient for rapid QC since other features, such as seed color and plant morphology, could be used
by breeders and genebank staff in combination with rapid QC analysis to detect miss-identity
[43]. To define the best ten SNPs, random re-sampling of ten markers was conducted with 2,000
replications within the best broad QC subset (S1666). Five subsets of markers were identified
which provided excellent differentiation of CMLs. Comparison of the five subsets indicated that
subset QC114 provided the best differentiation of CML pairs (Fig 5B) (S2 Dataset).

Fig 5. Comparison of five subsets of SNPs for broad QC and rapid QC. a: Five subsets of 80 SNPs for broad QC genotyping; b:
Five subsets of 10 SNPs for rapid QC genotyping.

doi:10.1371/journal.pone.0157236.g005
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Validation of selected markers
CMLs are frequently requested by users both internal and external of CIMMYT, and therefore
must be frequently re-generated for distribution. For 22 CMLs, a series of regenerations,
including the original source, were genotyped using DArTSeq platform. The genotypic similar-
ity of the 22 original CMLs ranges from 0.44 to 0.76 (S3 Dataset). Genotypic data from these
entries were filtered, and the analysis was conducted using only the 80 selected markers from
S1666. Using these markers, blind tests showed that, in all but one case, the most recent and
intermediate regenerations of each of the CMLs were most similar in identity to the original
CML (Table 1). One CML regeneration (CML233 re-generation 2) was identified as a different
line, sharing high similarity to CML132 (0.95). It shared only 0.60 similarities to the original
CML233 samples. This misalignment is likely due to a mislabeling of a sample during seed pro-
cessing or DNA extraction. In the case of CML14, the four regenerations had highest similari-
ties to the original CML14, but the similarity was markedly lower than other comparisons.
Further analysis of the original CML14 sample revealed a high rate of heterogeneity (12.3%);
this was lower in subsequent generations (1.7%). This result indicates that the original CML14
wasn’t as homozygous as expected for an inbred line, and it responded as expected to a pheno-
typic purification procedure conducted during regeneration. Analysis of the ten markers for
rapid QC provided similar results (Table 2). Both results showed that 80 broad QC markers
and 10 rapid QC markers worked very well, providing evidence of mislabeling of samples and
potential issues with residual heterogeneity.

Table 1. Similarity between original CMLs and re-generation using 80 broad QCmarkers.Genotypic similarity is indicated in parentheses.

Line Name Blind test identified the most similar original CML and their genetic similarity

re-generation 1 re-generation 2 re-generation 3 re-generation 4 re-generation 5

CML100 CML100(0.94) CML100(0.97) CML100(0.96) CML100(0.93) CML100(0.94)

CML106 CML106(0.98) CML106(0.99) CML106(0.98) CML106(0.97) CML106(0.99)

CML110 CML110(0.89) CML110(0.89) CML110(0.90) CML110(0.90) CML110(0.89)

CML126 CML126(0.96) CML126(0.99) CML126(0.99) CML126(0.99) -

CML131 CML131(0.99) CML131(0.99) CML131(1.00) CML131(0.99) CML131(0.99)

CML136 CML136(0.99) CML136(0.99) CML136(0.99) CML136(1.00) -

CML14 CML14(0.84) CML14(0.86) CML14(0.87) CML14(0.85) -

CML17 CML17(0.93) CML17(0.95) CML17(0.95) CML17(0.93) CML17(0.95)

CML178 CML178(0.97) CML178(0.95) CML178(0.95) CML178(0.98) CML178(0.94)

CML192 CML192(0.96) CML192(0.98) CML192(0.99) CML192(0.96) CML192(0.99)

CML193 CML193(0.95) CML193(0.95) CML193(0.89) - -

CML197 CML197(0.99) CML197(1.00) CML197(0.99) CML197(1.00) CML197(1.00)

CML233 CML233(0.94) CML132(0.95)* CML233(0.99) - -

CML236 CML236(0.94) CML236(0.91) CML236(0.93) - -

CML280 CML280(0.97) CML280(0.99) CML280(0.99) CML280(0.98) -

CML327 CML327(0.97) CML327(0.99) CML327(0.90) CML327(0.96) CML327(0.99)

CML362 CML362(0.97) CML362(0.98) CML362(0.97) CML362(0.98) -

CML364 CML364(0.99) CML364(1.00) CML364(1) CML364(1.00) -

CML390 CML390(0.97) CML390(0.97) CML390(0.97) CML390(0.96) CML390(0.97)

CML393 CML393(0.98) CML393(0.99) CML393(0.99) CML393(1.00) CML393(0.98)

CML435 CML435(0.96) CML435(0.97) CML435(0.99) CML435(0.97) -

CML82 CML82(0.96) CML82(0.97) CML82(0.96) CML82(0.95) -

* Re-generation 2 of CML233 has only 0.60 similarity to the original CML233 sample

doi:10.1371/journal.pone.0157236.t001
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Sample number needed for QC
The number of individuals sampled from a discrete entity is a key factor for implementation of
routine QC genotyping, as it directly influences the cost, time and accuracy of detection of off-
types within the entity. The influence of sample number was evaluated using different off-type
levels (0.001, 0.01, 0.02, 0.05 and 0.1) assuming the marker detection power was 100% (Fig 6).
As anticipated, the probability of detecting off-types increases with increasing sample size. For
example, at 0.01 population contamination level, the off-type detection rate rose from around
40% to 97.8% as the sample number increased from 48 to 384. If the allowed off-type composi-
tion of a sample was 5%, ninety six samples per population would provide close to 100% proba-
bility of detection of off-types at this level. At an allowed 1% population off-type, a sample size
of 384 individuals would be required to have a similar detection probability. A level of off-type
detection of 2% is similar to the error rate for genotyping in many platforms and would offer
the most stringent level for QC for inbreeding programs and genebank applications. Using 192
individuals per entry for QC genotyping would result in an off-type detection chance close to
98% (Fig 6). To determine the optimal sample size, we can look at the capacity to detect con-
tamination in populations with defined percentages of off-types. Considering different number
of off-types were detected in the sample from 0 to 3 (S7 Fig), the upper limit with a probability
of 0.95 was approximately 2% when there was one off-type in a sample of 192 entities. It
showed if two samples were detected as being different in a set of 96, the whole entry would

Table 2. Similarity between original CMLs and different re-generation using 10 rapid QCmarkers.Genotypic similarity is indicated in parentheses.

Line Name Blind test identified the most similar CML entry and their genetic similarity

re-generation 1 re-generation 2 re-generation 3 re-generation 4 re-generation 5

CML100 CML100(0.90) CML100(0.95) CML100(0.90) CML100(0.94) CML100(0.83)

CML106 CML106(1.00) CML106(1.00) CML106(1.00) CML106(1.00) CML106(1.00)

CML110 CML110(0.90) CML110(0.90) CML110(0.90) CML110(0.90) CML110(0.90)

CML126 CML126(0.94) CML126(1.00) CML126(1.00) CML126(1.00) -

CML131 CML131(1.00) CML131(1.00) CML131(1.00) CML131(1.00) CML131(1.00)

CML136 CML136(1.00) CML136(1.00) CML136(1.00) CML136(1.00) -

CML14 CML14(0.89) CML14(0.89) CML14(0.89) CML14(0.89) -

CML17 CML17(0.85) CML17(0.85) CML17(0.80) CML17(0.80) CML17(0.80)

CML178 CML178(0.93) CML178(0.93) CML178(0.92) CML178(1.00) CML178(0.86)

CML192 CML192(0.95) CML192(0.95) CML192(1.00) CML192(0.94) CML192(1.00)

CML193 CML193(0.95) CML193(0.94) CML193(0.80) - -

CML197 CML197(1.00) CML197(1.00) CML197(1.00) CML197(1.00) CML197(1.00)

CML233 CML233(1.00) CML132(1.00)* CML233(1.00) - -

CML236 CML236(1.00) CML236(0.89) CML236(0.93) - -

CML280 CML280(0.95) CML280(0.95) CML280(0.95) CML280(0.90) -

CML327 CML327(0.90) CML327(1.00) CML327(1.00) CML327(0.89) CML327(1.00)

CML362 CML362(1.00) CML362(1.00) CML362(0.95) CML362(1.00) -

CML364 CML364(1.00) CML364(1.00) CML364(1.00) CML364(1.00) -

CML390 CML390(1.00) CML390(1.00) CML390(1.00) CML390(1.00) CML390(1.00)

CML393 CML393(1.00) CML393(1.00) CML393(1.00) CML393(1.00) CML393(1.00)

CML435 CML435(1.00) CML435(1.00) CML435(1.00) CML435(1.00) -

CML82 CML82(0.94) CML82(0.94) CML82(0.94) CML82(0.94) -

* The re-generation 2 of CML233 is most similar to a different line.

doi:10.1371/journal.pone.0157236.t002
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have an upper limit of 5%. If two off-types were detected in sample of 192 individuals, the
whole entry would have an upper limit of 2.5% contamination with probability of 0.95.

Discussion
The main purpose of routine QC genotyping is to identify contamination or mislabeling of
germplasm during regeneration, seed increase or seed distribution. In order to achieve this, a
balance needs to be maintained between accuracy of detection and efficiency (both in terms of
cost and time). It is often assumed that more markers result in higher accuracy, this accuracy
being achieved at a higher cost. Optimization of the balance between accuracy and cost is the
main concern of the QC marker selection. Semagn et al. [14] suggested using 50–100 single
plex assay SNPs for QC genotyping at a cost estimated at 7-15USD per individual. The effec-
tiveness of this approach in differentiating germplasm entries genotypically was confirmed by
Ertiro et al. [25], in a study employing 191 KASP and 257,268 GbS markers. Selection of mark-
ers to use in QC analysis is important independent of genotyping platform. Use of the best
markers to separate germplasm is desired across any platform; informative data generation is a
fundamental pre-requisite. In single plex marker systems cost and time for data generation
scales with increased marker numbers. In contrast, in most sequencing based systems where
marker number is largely independent of cost up to tens to hundreds of thousands of markers,
the higher levels of missing data can result in erroneous interpretation, so sub-selection from
the many thousands of markers generated for those markers with high and repeatable repre-
sentation across samples is desired. In this paper, we propose the use of two separate sets of
markers to conduct QC, each focusing on different types of QC. The first was a broad QC
focusing on identity of a sample. This employed a minimum of 80 carefully selected markers to
distinguish each of the CML entries from one another. It is important to conduct this type of
QC before starting new breeding crosses, to ensure the identity and purity of the founding
parents and to evaluate the levels of residual heterogeneity within them. The second approach
was rapid QC for seed production. This approach used a smaller sub-set of only ten selected
markers. Application of the rapid QC was proposed to quickly assess mislabeling of entries
across the entire panel of CMLs, achieving a 99% chance of detection. Choosing from the two

Fig 6. Probability of detecting at least one off-type using different sample sizes at different assumed
off-type levels (P) within populations.

doi:10.1371/journal.pone.0157236.g006
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different QC approaches, dependent upon the specific application, will ultimately improve the
effectiveness of QC and can lower genotyping costs and data turnaround times within specific
platforms.

Sample number is also a key factor for QC genotyping because it directly influences the cost,
time and accuracy of detection of off-types. One hundred individuals have been used for hybrid
purity testing [44]. In this paper we calculated the detection probability based on assuming a
known off-types rate and 100%marker detection efficiency (Fig 6). A tolerable level of off-type
detection of 2% is generally suitable for most breeding programs and genebanks, indeed this is
close to the error rate of many genotyping platforms. Using this level of detection, sampling 192
individuals from each CML entry used for QC genotype would result in an off-type detection
probability of close to 98%. Using this detection system, if two off-types were detected in the sub-
set of 192 individuals, the upper limit of off-types at 0.95 probabilities would be 2.5%. Based on
this analysis, we suggest taking a minimum of 192 samples from each line submitted for QC geno-
typing. A threshold could be set at two off-types per entry, signifying that if two or fewer off-types
were detected per entry, it passes the QC test. Otherwise, the entry would need to be retested and
if failing a second time regenerated again, possibly using a different parental seed source.

There are a number of widely used SNP genotyping platforms, ranging from single SNP
methods such as KASP™ from LGC Genomics [23] (http://www.lgcgroup.com) and TaqMan™
from Applied Biosystems [45] (http://www.lifetechnologies.com), to larger fixed array based
systems, including BeadXpress™ and GoldenGate™ from Illumina [28,46] (http://www.illumina.
com/) and Axiom1 Genotyping Array from Affymetrixs (http://www.affymetrix.com), and
finally to the next-generation sequence based genotyping platforms, such as KeyGene1
SNPSelect (http://www.keygene.com) GbS from Cornell and DArTSeq, developed by Diversity
Arrays Technology (http://www.diversityarrays.com) [18,47]. The absolute cost per marker
data point is on average higher with single plex systems, however the total cost of operation per
sample is lower when only a limited number of markers are required. The lower cost per sam-
ple in the low marker number range is not simply influenced by assay cost but also by the DNA
extraction costs- single plex systems are generally the most tolerant of low-cost, low purity
DNA extraction methods. The large marker numbers currently generated by some of the chip
and sequence based genotyping platforms are more suited to application in discovery work,
such as GWAS, and some breeding implementations, such as genomic selection. The number
of markers generated by these systems is “overkill” for QC work and can offer a prohibitively
high per sample cost with currently available technology packages when samples from individ-
ual plants are considered.

Here we have based our analysis on the use of the lowest number of markers to employ in
QC genotyping to enable generation or selection of markers across multiple platforms. The
analysis framework used to select markers is applicable across the genotyping system(s) used in
analysis. The cost-benefit ratio may well swing in favor of sequence- and chip-based platforms
and away from single plex systems in the near future as; the ability to increasingly multiplex in
sequence and array-based platforms improves, the ability to better define specific sets of mark-
ers in sequence based systems (e.g. DArTcap) is commercialized by service providers and as
the potential to use composite sample based genotyping to assess homogeneity is further real-
ized. A summary of the current genotyping approaches used at CIMMYT, the approaches
being reviewed and cost analysis is presented in S4 Table.

The stage at which QC genotyping is conducted is also a critical consideration. A wide
range of potential intervention points for QC genotyping are available during the breeding and
conservation cycles, including vegetative plants in the field prior to pollination, seed or seed-
lings after harvest, and seed or seedlings prior to distribution. Each offers a different insight
into the genetic status of germplasm. In the broader context, when sampling seed directly, one
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needs to consider the potential confounding effects of polyploid endosperm in non-homozy-
gous germplasm. Different genotyping platforms and SNP markers respond in different ways
to increased maternal effect (for example, the definition of clear homozygote and heterozygote
boundaries can be influenced by 3n samples) and detection of contamination can be con-
founded by this in some cases (author personal experience). Careful empirical assessment of
this is required if using seed derived DNA across the different genotyping platforms available.

In conclusion, the work presented here outlines the framework and output for the selection
of the minimum number of high quality, robust markers for two complimentary QC genotyp-
ing approaches for maize lines. The methods and analysis presented offer a roadmap for the
selection of markers for other germplasm resources while providing some reflection on the
consideration of genotyping platforms.

Supporting Information
S1 Dataset. The CurlyWhirly formatted file of the Principal Coordinate Analysis (PCoA)
results with mega environments and grain color classification.
(TXT)

S2 Dataset. Optimal marker subsets for broad (S1666) and rapid QC (QC114).
(TXT)

S3 Dataset. The genotypic similarity of the 22 original CMLs used for QC marker valida-
tion.
(XLSX)

S1 Fig. Principal Coordinate Analysis (PCoA) for all CMLs with mega environment classi-
fication. The 3-D video of this figure can be found in “S1 Video” and the original dataset for
the figure and video is available in “S1 Dataset” which can be opened by CurlyWhirly software
(https://ics.hutton.ac.uk/curlywhirly/download-curlywhirly/).
(TIF)

S2 Fig. Principal Coordinate Analysis (PCoA) for all CMLs with grain colour classification.
The 3-D video of this figure can be found in “S2 Video” and the original dataset for the figure
and video is available in “S1 Dataset” which can be opened by CurlyWhirly software (https://
ics.hutton.ac.uk/curlywhirly/download-curlywhirly/).
(TIF)

S3 Fig. Hierarchical Clustering showing all of the CMLs with germplasm source classifica-
tion. The CIMMYT Breeding Program and the source population are indicated for each clus-
ter. In the source materials, “P” indicates the CIMMYT synthetic population founder; “G”
indicates the synthetic gene pool founder. MA/ST = mid-altitude/sub-tropical adaptation;
MBRET = multiple borer resistance and Exserohilum turcicum resistant fonder;
SintAmTSR = synthetic yellow and tar spot complex resistant founder, SA = acid soil tolerance
founder. The breeding program and source population information of all CMLs can be found:
http://hdl.handle.net/11529/10246.
(TIF)

S4 Fig. PCA representation of marker groups defined by PCA and K-means methods.
(TIF)

S5 Fig. Influence of marker sequencing coverage on marker quality parameters.Heteroge-
neity, missing values and number of markers are shown.
(TIF)
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S6 Fig. Influence of marker numbers on CML separation evaluated using broad QCmaker
set S1666 to estimate the number of markers needed for rapid QC.
(TIF)

S7 Fig. Estimation of the percentage of off-type samples within a population, at percentile
0.95 of the posterior distribution, from sub-population sampling using different sample
size and different levels of off-type detection.
(TIF)

S1 Table. The number of regenerations and their source of the 22 multiple regeneration
CMLs used in present study.
(DOCX)

S2 Table. Influence of marker filter parameters on the number of SNP markers defined
from the total dataset for QC analysis.
(DOCX)

S3 Table. List of trait-converted CMLs, corresponding recurrent parents and introgression
traits.
(DOCX)

S4 Table. Summary of the current genotyping approaches, approximate costs and infor-
matics needs assessed experienced by CIMMYT.
(DOCX)

S1 Video. Principal Coordinate Analysis (PCoA) for all CMLs with mega environment clas-
sification.
(AVI)

S2 Video. Principal Coordinate Analysis (PCoA) for all CMLs with grain color classifica-
tion.
(AVI)
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