Comparison of strategies for discovery and utilization of useful genetic material from maize landrace populations

Gorjanc G, Jenko J, Hickey J, Hearne S

University of Ljubljana Biotechnical Faculty

2013-07-05

Aim

Compare strategies of discovery of useful genetic material from landraces for the potential introgression into the improved breeding material in maize via simulation

The plan

- 1) Genotype gene bank accessions
- 2) Collect test-cross phenotypes
- 3) Genomic evaluation and selection

4) Create synthetic population with useful genetic material for further improvement

Simulation - setup

• Mimic the "discovery scheme" of the SeeD project

Landraces

Test-cross phenotypes

Simulation – factors?

- Effective population size → genomic variance (N_e=1K, <u>100K</u>) #2
- Landrace variance (F=<u>0.3</u>, 0.9) #2
- Heritability (h²=0.25, 0.50) #2
- Approach (Landrace, LandraceDH, Test-Cross) #3
- Genotyping platform (GBS10x10K, <u>GBS1x100K</u>) #2
- Landrace seeds in training (nSeed=<u>1</u>, <u>3</u>, <u>5</u>) #3
- Selection of landraces (n=<u>40</u>, <u>80</u>, k=<u>10</u>, <u>20</u>, <u>40</u>) #6
- **Retrain in cycles** (n=<u>0</u>, <u>20</u>, 40, 60) #4
- Scenarios: 2×2×2×3×2×3×6×4=2592 × 10 replicates

Simulation - maize genome

- Coalescent simulation per chromosome
 - two heterotic groups (A and B)
 - allocate QTLs and SNPs
 - rank haplotypes by true breeding value (TBV)
 - the best for testers (A, $B \rightarrow A \times B$)

Simulation - maize genome II

- Coalescent simulation per chromosome
 - Effective population size (N_e =1K, 10K, <u>100K</u>)
 - Mutation rate 2.5×10⁻⁸
 - Recombination rate 1.0×10⁻⁸

- N_e=100K #Seg. sites: 27×10⁶ Disk usage: 152 GB
- N_e=10K #Seg. sites: 10×10⁶ Disk usage: 100 GB
- N_e=1K
 #Seg. sites: 5×10⁶
 - Disk usage: 28 GB

Simulation - landraces

• 3000 landraces via gene dropping

- global (between) variance already due to large N_e
- between and within variance controlled by genetic drift (random mating of $2N_p$ individuals for t generations)

$$N_p = \frac{1}{4(1 - (1 - F_t)^{\frac{1}{t}})}$$

F _t	2 N _p	t
0.3	10	7
0.9	2	9

Simulation - phenotypes

- Additive polygenic model
 (2000 QTL per chromosome from Gaussian dist.)
- Cross with a hybrid-tester and obtain individual true breeding values and phenotypic values
- Phenotype = mean test-cross performance with defined heritability (h²=0.25, 0.50)

Simulation – genomic model

 Genomic evaluation using a model linking phenotypic values to genomic markers to obtain a genomic estimate of a breeding value (gEBV)

• Ridge regression

$$y_{i} \sim N(\mu_{i}, \sigma_{e}^{2}) \qquad j$$

$$\mu_{i} = \alpha + \sum_{j=1}^{p} m_{j} x_{i,j} \qquad i \qquad M$$

$$m_{j} \sim N(0, \sigma_{m}^{2}) \qquad gEBV_{i} = \sum_{j=1}^{p} m_{j} x_{i,j}$$

Simulation – approach (discovery phase)

• Landrace

LandraceDH

• Test-cross

Simulation – approach (synthetic population development)

Simulation – factors?

- Effective population size → genomic variance (N_e=1K, <u>100K</u>) #2
- Landrace variance (F=<u>0.3</u>, 0.9) #2
- Heritability (h²=0.25, 0.50) #2
- Approach (Landrace, LandraceDH, Test-Cross) #3
- Genotyping platform (GBS10x10K, <u>GBS1x100K</u>) #2
- Landrace seeds in training (nSeed=<u>1</u>, <u>3</u>, <u>5</u>) #3
- Selection of landraces (n=<u>40</u>, <u>80</u>, k=<u>10</u>, <u>20</u>, <u>40</u>) #6
- **Retrain in cycles** (n=<u>0</u>, <u>20</u>, 40, 60) #4
- Scenarios: 2×2×2×3×2×3×6×4=2592 × 10 replicates

Metrics of interest?

- Metrics:
 - genetic gain (ΔG)

(mean of true breeding values after selection)

accuracy of evaluation

(correlation between the true and estimated value)

- genomic similarity to a tester

(proportion of genome equal to the genome of a tester)

Where (stage of simulation):
 – ???

Stage of simulation

How to present results?

- Results
 - 2592 scenarios × 10 replicates
 - 6 stages of simulation

→25920 × 6 ≈ 150 000 values per metric

• Show the effect of <u>individual</u> factors

• Show the effect of the most influential factors and their <u>interactions</u> with the use of <u>regression trees</u>

Approach - ΔG

Approach - ΔG

Approach - accuracy

Approach - accuracy

Approach - similarity

???

- Very strong interaction between the genomic variability (as measured by N_e) and approach in the discovery phase!!!
 - associations between markers and QTL weaker with larger $\rm N_e$
 - marker data available on landraces and not on the test-cross individuals

Introgression & N_e

 With small N_e use test-cross individuals for the development of improved lines for breeding (i.e. deriving lines from TC used for recalibration)

 With large N_e use landrace individuals for the development of improved populations

Landrace variance

Landrace variance

Genetic merit

Retrain in cycles

Retrain in cycles

Conclusions (recomendations)

- Approach
 - do not use the test-cross approach for population improvement
 - more gain with the LandraceDH approach but additional seasons → not worthwhile
- Genotyping platform
 - larger chip seems to be better due to a large $\rm N_e$
- The way landraces are selected not influential
 # LR screened and ind/LR
- Ideally if done again test more seeds per landrace
 - 3 per landrace likely enough
- <u>Need to retrain in cycles</u>
 - 40 phenotypes likely enough

Approach 1: Landrace

Approach 2: Landrace + double haplotype technology (LandraceDH)

Developing synthetic population

