Comparison of strategies for discovery and utilization of useful genetic material from maize landrace populations

Gorjanc G, Jenko J, Hickey J, Hearne S

2013-07-05
Aim

Compare strategies of discovery of useful genetic material from landraces for the potential introgression into the improved breeding material in maize via simulation
The plan

1) Genotype gene bank accessions

2) Collect test-cross phenotypes

3) Genomic evaluation and selection

4) Create synthetic population with useful genetic material for further improvement
Simulation - setup

- Mimic the „discovery scheme“ of the SeeD project

Maize genome

Landraces

Test-cross phenotypes
Simulation – factors?

• Effective population size \rightarrow genomic variance ($N_e=1\text{K, 100K}$) #2
• Landrace variance ($F=0.3, 0.9$) #2
• Heritability ($h^2=0.25, 0.50$) #2
• Approach (Landrace, LandraceDH, Test-Cross) #3
• Genotyping platform (GBS10x10K, GBS1x100K) #2
• Landrace seeds in training ($n\text{Seed}=1, 3, 5$) #3
• Selection of landraces ($n=40, 80, k=10, 20, 40$) #6
• Retrain in cycles ($n=0, 20, 40, 60$) #4
• Scenarios: $2\times2\times2\times3\times2\times3\times6\times4=2592 \times 10$ replicates
Simulation - maize genome

- Coalescent simulation per chromosome
 - two heterotic groups (A and B)
 - allocate QTLs and SNPs
 - rank haplotypes by true breeding value (TBV)
 - the best for testers (A, B \(\rightarrow\) A×B)
 - lowest half for landraces
Simulation - maize genome II

• Coalescent simulation per chromosome
 – Effective population size ($N_e=1K$, 10K, 100K)
 – Mutation rate 2.5×10^{-8}
 – Recombination rate 1.0×10^{-8}

- $N_e=100K$
 #Seg. sites: 27×10^6
 Disk usage: 152 GB
- $N_e=10K$
 #Seg. sites: 10×10^6
 Disk usage: 100 GB
- $N_e=1K$
 #Seg. sites: 5×10^6
 Disk usage: 28 GB
Simulation - landraces

• 3000 landraces via gene dropping
 – global (between) variance already due to large N_e
 – between and within variance controlled by genetic drift
 (random mating of $2N_p$ individuals for t generations)

$$N_p = \frac{1}{4 \left(1 - (1 - F_t)^{\frac{1}{t}}\right)}$$

<table>
<thead>
<tr>
<th>F_t</th>
<th>$2N_p$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0.9</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>
Simulation - phenotypes

• Additive polygenic model
 (2000 QTL per chromosome from Gaussian dist.)

• Cross with a hybrid-tester and obtain individual true breeding values and phenotypic values

• Phenotype = mean test-cross performance with defined heritability (h²=0.25, 0.50)
Simulation – genomic model

• Genomic evaluation using a model linking phenotypic values to genomic markers to obtain a genomic estimate of a breeding value (gEBV)

• Ridge regression

\[y_i \sim N(\mu_i, \sigma_e^2) \]
\[\mu_i = \alpha + \sum_{j=1}^{p} m_j x_{i,j} \]
\[m_j \sim N(0, \sigma_m^2) \]
\[gEBV_i = \sum_{j=1}^{p} m_j x_{i,j} \]
Simulation – approach (discovery phase)

- Landrace
- LandraceDH
- Test-cross
Simulation – approach
(synthetic population development)
Simulation – factors?

- **Effective population size** → genomic variance
 \(N_e = 1K, 100K \) #2
- **Landrace variance**
 \(F = 0.3, 0.9 \) #2
- **Heritability**
 \(h^2 = 0.25, 0.50 \) #2
- **Approach**
 (Landrace, LandraceDH, Test-Cross) #3
- **Genotyping platform**
 (GBS10x10K, GBS1x100K) #2
- **Landrace seeds in training**
 \(n_{Seed} = 1, 3, 5 \) #3
- **Selection of landraces**
 \(n = 40, 80, k = 10, 20, 40 \) #6
- **Retrain in cycles**
 \(n = 0, 20, 40, 60 \) #4
- **Scenarios**: \(2 \times 2 \times 2 \times 3 \times 2 \times 3 \times 6 \times 4 = 2592 \times 10 \) replicates
Metrics of interest?

• Metrics:
 – genetic gain (ΔG)
 (mean of true breeding values after selection)
 – accuracy of evaluation
 (correlation between the true and estimated value)
 – genomic similarity to a tester
 (proportion of genome equal to the genome of a tester)

• Where (stage of simulation):
 – ???
Stage of simulation

1. Selecting landraces (bags → B)

2. Sel. seeds within landrace (WB)

3.-6. Synthetic population cycles (C1, C2, C3, and C4)
How to present results?

• Results
 – 2592 scenarios × 10 replicates
 – 6 stages of simulation
 → $25920 \times 6 \approx 150\,000$ values per metric

• Show the effect of individual factors

• Show the effect of the most influential factors and their interactions with the use of regression trees
Approach - ΔG

Approach
- Landrace
- LandraceDH
- Test-cross

Genetic merit

Stage
- B
- WB
- C1
- C2
- C3
- C4
Approach - ΔG

<table>
<thead>
<tr>
<th>N_e</th>
<th>1K</th>
<th>100K</th>
</tr>
</thead>
<tbody>
<tr>
<td>h^2 / F</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

![Graphs showing different scenarios for ΔG with N_e and h^2 / F as parameters.](image-url)
Approach - accuracy
Approach - accuracy

<table>
<thead>
<tr>
<th>N_e</th>
<th>1K</th>
<th>100K</th>
</tr>
</thead>
<tbody>
<tr>
<td>h^2 / F</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Diagrams:

- **1/4**
- **1/2**
Approach - similarity
Approach - similarity

<table>
<thead>
<tr>
<th>Ne</th>
<th>1K</th>
<th>100K</th>
</tr>
</thead>
<tbody>
<tr>
<td>h² / F</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

![Graphs showing similarity across different stages and datasets for Ne, 1K, and 100K with h²/F ratios of 0.3 and 0.9.](Image)
• Very strong interaction between the genomic variability (as measured by N_e) and approach in the discovery phase!!!
 – associations between markers and QTL weaker with larger N_e
 – marker data available on landraces and not on the test-cross individuals
Introgression & N_e

- With small N_e use test-cross individuals for the development of improved lines for breeding (i.e. deriving lines from TC used for recalibration)

- With large N_e use landrace individuals for the development of improved populations
Effective population size

Ne

100K - 1K

Genetic merit

Stage

B WB C1 C2 C3 C4
Effective population size

Ne

100K

1K

Stage
Landrace variance

Stage: B, WB, C1, C2, C3, C4

Genetic merit

F

0.3 - 0.9
Heritability

h^2

0.25 - 0.50

Genetic merit

Stage

B WB C1 C2 C3 C4
Genotyping platform

GBS

- GBS10x10K
- GBS1x100K

Genetic merit

Stage

B, WB, C1, C2, C3, C4
Landrace seeds in training
Selection of landraces
Selection of landraces

BagSelection

- 40,10,10
- 40,20,10
- 40,40,10
- 80,10,10
- 80,20,10
- 80,40,10

Genetic merit

Stage

B, WB, C1, C2, C3, C4
Retrain in cycles
Retrain in cycles

CycleTrain

- 0
- 20
- 40
- 60

Genetic merit

Stage

B WB C1 C2 C3 C4
Interactions \rightarrow decision trees

(Stage 4, Ne=100K, F=0.3, ΔG)
Conclusions (recomendations)

• **Approach**
 – do not use the test-cross approach for population improvement
 – more gain with the LandraceDH approach but additional seasons → not worthwhile

• **Genotyping platform**
 – larger chip seems to be better due to a large N_e

• **The way landraces are selected not influential**
 – # LR screened and ind/LR

• **Ideally if done again test more seeds per landrace**
 – 3 per landrace likely enough

• **Need to retrain in cycles**
 – 40 phenotypes likely enough
Approach 1: Landrace

3000 bags/accessions
Ne = 1K, 10K, 100K, or 1000K?
h² = 0.25 or 0.50
F within accessions = 0.3, 0.6, or 0.9

Plant a random selection of 1, 3, or 5 seeds per accession for training

Genotyping platforms (GBS): 1x with 350K, 10x with 8K

Select 40 or 80 best accessions ranked by GEBV

Select at random 10, 20, or 40 seeds from each selected accession

GENOTYPE

PREDICT GEBV

Select the best 20 seeds from the best 20 accessions ranked by GEBV

See slide 4 for further cycles!!!

TRAIN THE MODEL
(use genotypic information from generation F0 and phenotypic information from F1)

PREDICT GEBVs OF ACCESSIONS
Approach 2: Landrace + double haplotype technology (LandraceDH)

- Select 40 or 80 best accessions ranked by GEB.

- Plant a random selection of 1, 3, or 5 seeds per accession for training.

 - GENOTYPE

 - F0

 - Accession 1

 - Accession 2

 - Accession 3

 - Genotyping platforms (GBS): 1x with 350K, 10x with 8K

- Select at random 10, 20, and 40 or seeds from each selected accession.

- PREDICT GEBVs

- Select the best 20 seeds from the best 20 accessions ranked by GEBV.

- Plant seeds and cross to inducer.

- Inducer

- Random 5 seeds from each plant and treat with colchicine to obtain double haplotypes.

- GENOTYPE

- PREDICT GEBV

- Select the best double haplotype from each plant ranked by GEBV.

See slide 4 for further cycles!!!
Approach 3: Testcross
Select among testcrosses instead of accessions

- Plant a random selection of 1, 3, or 5 seeds per accession for training

 GENOTYPE
 F0
 Accession 1 -> Accession 2 -> Accession 3
 Tester (CML heterotic group A x CML heterotic group B)

 GENOTYPE
 F1
 Plant a random selection of 20 seeds per testcross

 PHENOTYPE

Select 40 or 80 best accessions ranked by GEBV

Genotyping platforms (GBS):
1x with 350K, 10x with 8K

Select at random 10, 20, and 40 or seeds from each selected accession

GENOTYPE
PREDICT GEBV

Select the best 20 seeds from the best 20 accessions ranked by GEBV

See slide 4 for further cycles!!!

Train the model
(use genotypic information from generation F0 and phenotypic information from F1)

Predict GEBVs of accessions
Developing synthetic population

CX
Random select of 10 seeds per mother to obtain 200 seeds to genotype

Random mating

GENOTYPE

PREDICT GEBV

Select the best 40, 60, or 80 seeds ranked by GEBV

Random mating

CX+1

REPEAT THIS 4 TIMES

4x

Tester (CML of opposite heterotic group)

PHENOTYPE
(use genotypic information of cycle seeds and their testcross phenotype)

TRAIN THE MODEL