Next generation genotyping to enable use of maize genetic resources

Sarah Hearne,
Juan Burgueño,
J. Andrés Christen,
Jorge Franco,
Andrzej Kilian,
Ky L. Mathews,
Peter Wenzl
Genetic resources in genebanks

> 250,000 ancestral genotypes in 45,000 populations (accessions) at CIMMYT and Mexican partner organizations. Breeding lines, wild relatives. (INIFAP, UAAAN, UACH, UdG)
Global maize breeding programs

Maize genetic resources

Marker-assisted germplasm development pipeline (GS)
Genetic structure of maize germplasm collections
Key agricultural traits in subsets
Environmental data
Data-mining results
Disseminate data via a breeder-oriented web portal

Global maize breeding programs
Maize strategy

Partners: Mexican genebanks (INIFAP, UAAAN, UdeG, UACH), Langebio, DArT

- Molecular Atlas
 - Per-se evaluation
 - Large and small-effect alleles
 - Partners: INFAP, UdeG, UAAN, CINVESTAV, Langebio

- GWAS/GS of 4500 testcrosses
 - Small-effect alleles

- Germplasm development
 - Genomic selection
 - MABC

Partners: Cornell Univ., INIFAP, UAAAN, UdeG

Breeding programs (line and landrace improvement)

Germplasm
Maize molecular atlas

Objective

- Understand and describe molecular genetic diversity of maize to aid germplasm selection and identify genetic imprints resulting from environmental and human influence

Outputs

- Fingerprints- genotypic profiles of maize landraces, elite materials and wild relatives available in a query-able portal with associated passport and characterization data where available
Technology

- SNP genotyping achieved through singleplex or low multiplex PCR based assays (TaqMan, KASP), pre-designed arrays like Illumina golden gate and infinium, and thirdly through sequencing.

- Genotyping by sequencing (GBS) - scalable marker discovery and genotyping through next generation sequencing technologies. GBS - $, tech advancement, repeatability (e.g. v exome capture).
Sampling

- Within accession variation in maize is large. Within accessions variance component > between accession. How much variability do we want to capture?
- Resources available - $, time, human and infrastructure capacity, technological capacity
- What questions do we want to ask of the data?
 - ...

Potential questions

Some examples

- Germplasm bank curator
 - Race evaluation; “I have an accessions classified as pepitilla. Does it cluster with other accessions classified as pepitilla?”

- Breeder
 - Germplasm selection; “I want to expand my subtropical breeding pool to bring in some novel elite materials, which CMLs or other publically available materials could I use?”

- Evolutionary geneticists
 - Selection footprints “How does the frequency of allele/haplotype X change as altitude increases?”
Maize genotyping criteria

- To avoid ascertainment bias due to sampling in heterogenous landraces we need to genotype multiple individuals- SSRs used 15 to 30 individuals
- To get an accurate representation of landraces we need to be able to score heterozygotes
- Reduce the impact of ascertainment bias due to SNP calling- reference inferred bias
- We need to do this in a resource effective manner
● IGD Cornell and DArT.

● IGD- Uses frequently cutting restriction enzyme (RE) to generate many fragments of genomic DNA which are then sequenced. More than 850,000 SNP are identified per sample in *homozygous* state.

● B73 reference

● Fantastic for bi-parental breeding applications and line evaluations. Imputation improves SNP density to between 1.5 to 2M SNP per sample and can be used to infer heterozygotes in structured populations

● Used for a large GWAS/GS study in SeeD

● Doesn’t fit our criteria for large landrace application
● DArT GBS uses different RE systems than Cornell; two enzymes employed- one (PstI) has a partly overlapping recognition sequence with the RE employed by IGD
● Creates smaller number of fragments and therefore smaller number of SNP- C. 75,000 in total
● Can score heterozygotes in many loci as multiple copies of each fragment are sequenced (2-2.5M fragments sequenced per sample)
● PAV also generated
● Meets more specific needs
Optimization of GBS

- We need to do this in a resource effective manner
- Can we sample multiple individuals effectively in one sample?
- How many individuals per accession do we need to sample to effectively represent the accession
GBS for landraces

- Highly repeatable GBS protocol optimized for maize samples developed at DArT

- Preliminary work indicated that this protocol was applicable to the use of bulks and methods developed to estimate allele f in mixed samples
GBS for landraces- sampling

- 8 diverse accessions
- GBS of 92-96 individuals per accessions
- Simulated sampling of a defined number of individuals (4, 8, 12 etc.) from the dataset and determine distance and diversity indices of the population and samples
GBS for landraces - sampling

- What do you want to measure - distance or diversity? both
GBS for landraces - bulks

- 8 diverse accessions
- Extracted DNA from bulked tissue of individuals; 4, 8, 1248
- Created two independent bulks per sample size per population
GBS for landraces- sampling

- Divergence between bulks stabilizes from 20 for all accessions

![Graph showing test ratios for Hamming matrix between two independent bulks against number of individuals per bulk.](image-url)
GBS for landraces- sampling

- Is there a threshold in diversity measures?
- Calculated numerous diversity indices
- Linear and quadratic regression using segmented model with plateau to investigate influence of bulk size on diversity measures
GBS for landraces - sampling

Mean He

12-40+
GBS of bulk samples

- Potentially some resolution is lost considering diversity measures using bulks.
- Further analysis conducted to address this.
GBS of bulk samples

- Recent analysis (yesterday)
- Comparing the effect of bulk v individual on estimation of He (bulks v component individuals)- bulks result in a slight overestimation of diversity
GBS of bulk samples

- Can we genotype bulks and derive population level allele frequencies?
- Yes and these are representative of population level genetic distances
- Thirty plants per accession provides sample with little divergence of GBS profile from individuals, facilitates use of one bulk per accession, optimization of diversity estimates, is practically achievable,
- Some overestimation considering diversity measures – estimates of effect determined
GBS of maize landraces

• Started to implement a bulked GBS approach - 1500 accessions
• Processing 12,000
• Landrace population level GBS profiles $40/accessions
• Thirty plants per accession (equivalent cost $1200 per accession)
• Some loss of resolution/over estimation - document errors in estimates
Towards a Maize molecular atlas

Thank you